Современные системы автопилота для авто, виды, принцип и особенности работы

Система автоматической парковки

Система автоматической парковки (другое наименование — интеллектуальная система помощи при парковке, обиходное название – парковочный автопилот) относится к активным парковочным системам, т.к. обеспечивает парковку автомобиля в автоматическом или автоматизированном (автоматически выполняются отдельные функции) режиме.

Различные системы автоматической парковки помогают при выполнении параллельной парковки, перпендикулярной парковки. Больше распространены системы с параллельной парковкой. Автоматическая парковка осуществляется за счет согласованного управления углом поворота рулевого колеса и скорости движения автомобиля.

Известными интеллектуальными системами помощи при парковке являются:

  • Park Assist на автомобилях Volkswagen;
  • Park Assist Vision на автомобилях Volkswagen;
  • Intelligent Parking Assist System на автомобилях Toyota, Lexus;
  • Remote Park Assist System на автомобилях BMW;
  • Active Park Assist на автомобилях Mercedes-Benz, Ford;
  • Advanced Park Assist на автомобилях Opel.

Конструкция системы автоматической парковки включает ультразвуковые датчики, выключатель, электронный блок управления, а также исполнительные устройства систем автомобиля.

В интеллектуальной системе помощи при парковке используются ультразвуковые датчики, аналогичные пассивной парковочной системе, но имеющие большую дальность действия (до 4,5 м). Количество датчиков в зависимости от разновидности системы различается. Например в системе Park Assist последнего поколения устанавливается 12 ультразвуковых датчиков: 4 – впереди, 4 сзади и 4 по бокам автомобиля.

Включение системы осуществляется принудительно при необходимости осуществить парковку. Для этого на панели приборов (рулевом колесе) имеется специальный выключатель.

Электронный блок управления принимает сигналы от ультразвуковых датчиков и преобразует их в управляющие воздействия на исполнительные устройства, в качестве которых выступают другие системы автомобиля: курсовой устойчивости, управления двигателем, электроусилитель рулевого управления, автоматическая коробка передач. Взаимодействие с указанными системами осуществляется через соответствующие электронные блоки управления.

Необходимая для автоматической парковки информация выводится на информационный дисплей и используется водителем в процессе парковки.

Работа системы автоматической парковки

Работу системы автоматической парковки условно можно разделить на два этапа: поиск подходящего места на парковке и собственно выполнение парковки.

Поиск подходящего места на парковке производится с помощью ультразвуковых датчиков. Например, в конструкции системы Park Assist для этой цели предусмотрено четыре боковых ультразвуковых датчика — по два с каждой стороны автомобиля. При движении автомобиля вдоль ряда припаркованных машин с определенной скоростью (до 40 км/ч при параллельной парковке и до 20 км/ч при поперечной парковке) датчики фиксируют расстояние между ними, а в системе Park Assist Vision – и их положение относительно транспортного средства (параллельно или перпендикулярно).

Сигналы датчиков обрабатываются электронным блоком управления. Если расстояние для парковки достаточное, система подает сигнал водителю — выводит на информационный дисплей автомобиля соответствующую информацию. В системе Park Assist за достаточное для парковки расстояние принимается расстояние, превышающее длину автомобиля на 0,8 м, в системе Advanced Park Assist – на 1 м.

Парковка транспортного средства может осуществляться двумя способами – непосредственно водителем с помощью предлагаемых системой инструкций или автоматически без участия водителя.

Визуальные и тестовые инструкции водителю выводятся на информационный дисплей. Они касаются рекомендаций по повороту рулевого колеса на определенный угол и направлению движения. Такой способ автоматизированной парковки используется в системе Advanced Park Assist.

Автоматическая парковка производится путем упорядоченного воздействия на исполнительные механизмы систем автомобиля:

  • электродвигатель электрического усилителя рулевого управления;
  • насос обратной подачи и клапаны тормозных механизмов системы курсовой устойчивости;
  • электродвигатель дроссельной заслонки системы управления двигателем;
  • электромагнитные клапаны автоматической коробки передач.

С целью безопасности движения работу системы всегда можно перевести из автоматического режима в ручной режим. В последних конструкциях системы автоматическая парковка может производиться при нахождении водителя как в автомобиле, так и за его пределами – с ключа.

Устройство системы

Модуль HVAC (Heating Ventilation Air-Conditioning) включает в себя сразу три отдельных устройства. Это системы отопления, вентиляции и кондиционирования. Основная функция каждой из них – поддерживать комфортные условия и температуру воздуха в салоне транспортного средства.

Модуль HVAC. В нем также предусмотрено место для установки салонного фильтра

Выбор той или иной системы обуславливается климатическими условиями: в холодное время года задействуется система отопления, в жаркие дни в автомобиле включается кондиционер. Для того чтобы воздух внутри оставался свежим, применяется вентиляция.

Система отопления в автомобиле включает в себя:

  • отопитель смешивающего типа;
  • центробежный вентилятор;
  • направляющие каналы с заслонками.

Потоки нагретого воздуха направляются на лобовое и боковые стекла, а также на лицо и ноги водителя и пассажира, сидящего спереди. В некоторых автомобилях также устанавливаются воздуховоды для задних пассажиров. Дополнительно используются электрические устройства для обогрева заднего и ветрового стекол.

Система вентиляции помогает охлаждать и очищать воздух в автомобиле. При работе вентиляции задействуются основные элементы отопительной системы. Дополнительно применяются фильтры очистки, задерживающие пыль и улавливающие посторонние запахи.

Наконец, система кондиционирования способна охлаждать воздух и уменьшать влажность в салоне машины. Для этих целей используется автомобильный кондиционер.

Система HVAC позволяет не только охладить салон в жаркую погоду, но и избавиться от запотевания стекол при повышенной влажности воздуха

Основные рабочие элементы тормозной пневмосистемы

Как отмечалось, в грузовых машинах чаще всего применяются пневматические тормоза, которые конструктивно состоят из следующих элементов.

Компрессор

Монтируется на маховике силового узла и обеспечивает подачу воздуха с необходимым давлением. Он поступает через трубопровод, очищается, а после подается к цилиндрам компрессора.

При достижении давления в 0,7 МПа останавливается подача в пневматическую систему, а при снижении до 0,65 МПа —прекращается выход в атмосферу. Компрессор монтируется в передней части грузовика в непосредственной близости от мотора.

Работает от клиновидного ремня, объединяющего шкивы вентилятора охлаждения и компрессорного механизма. Давление определяется по манометру. После нажатия на педаль воздух подается в тормозные отсеки, а на следующем этапе колодки сжимаются и обеспечивают торможение.

Главный тормозной цилиндр (ГТЦ)

Назначение узла состоит в восприятии усилия, которое передается от тормозной педали / рычага. Механизм отличается по конструктивным особенностям и принципу действия. В состав входит кожух цилиндра, поршень, уплотнители и соединительные узлы. В сложных конструкциях применяется два или более контуров с увеличенным количеством поршней. В некоторых версиях тормозных систем используются двойные цилиндры.

Возле ГТЦ предусмотрена емкость с тормозной жидкостью, которые соединяется с гидравлическим цилиндром. При использовании индивидуального бака он соединяется с ГТЦ с помощью резиновой трубы. Благодаря этой особенности, обеспечивается пополнение жидкости в случае течи, принятии лишнего рабочего состава при расширении и т. д. 

К примеру, в грузовом автомобиле Газ 53 предусмотрено 2-контурная система, а ГТЦ имеет двухсекционное исполнение. Каждый из них работает со своим контуром. Также имеется две емкости, которые объединяются с ГТЦ через пру отверстий.

Главными элементом является датчик, отличающийся поплавковой конструкцией и обеспечивающий замыкание контактной группы при снижении жидкости ниже допустимого уровня. При заливке системы необходимо удаление воздуха.

Колесные рабочие цилиндры

Один из главных узлов пневматической тормозной системы, обеспечивающий приведение в действие тормозов— рабочие цилиндры. Конструктивно состоят из двух поршней, которые обеспечивают передачу усилия и остановку автомобиля.

Для срабатывания этих элементов необходимо нажать на педаль тормоза. При ее удерживании происходит движение поршней, воздействующих на колодки и обеспечивающих замедление вращения барабана. 

Регулятор давления

В его функции входит контроль и поддержание необходимого давления в системе. При необходимости устройство подает дополнительный поток воздуха или спускает его для поддержания работоспособности системы. 

Кроме рассмотренных выше узлов, пневматическая система грузовика включает в себя:

  • осушитель воздушного потока — защита от попадания влаги в систему;
  • 4-контурный защитный клапан — распределение воздуха по контурам и защита от утечки;
  • тормозной кран (ножной) — используется для управления тормозами;
  • ресиверы — баллоны, накапливающие необходимый запас воздуха;
  • камеры системы — для преобразования пневматики в механическое воздействие;
  • ручной рычаг — управление стояночной тормозной системой;
  • элементы АБС;
  • энергоАКБ;
  • манометр — показывает уровень давления;
  • индикаторы на рабочей панели и т. д.

Как сбросить активный капот Mercedes?

Если ваш капюшон поднимается сзади, выполните следующие действия, чтобы закрыть капюшон.

  1. Потяните крышку капота и откройте капот.
  2. Держите руки в передней части капюшона и поднимайте их до тех пор, пока петли не будут сдвинуты и не защелкнутся.
  3. Закройте капюшон.

Если сработало предупреждающее сообщение об активном капоте, возможно, вам придется заменить приводы капота Mercedes. Поставьте свой Mercedes-Benz на диагностику, прежде чем заменять какие-либо детали.

В некоторых случаях вам может потребоваться использовать сканер Mercedes-Benz, такой как iCarsoft MBII, Foxwell для Benz или Autel MaxiDAS, чтобы очистить коды ошибок от модуля SRS.

Как только коды будут удалены, защита пешеходов также будет восстановлена.

Принцип работы

Основы автономного вождения достаточны просты – автомобиль осматривает дорожную обстановку, оценивает её состояние, предсказывает развитие ситуации и принимает решение по действию с органами управления или пробуждению водителя. Однако техническая реализация неимоверно сложна как по аппаратному решению, так и по алгоритмам программного управления.

Техническое зрение реализуется по известным принципам просмотра обстановки в различных диапазонах электромагнитных волн и акустических воздействий на активные и пассивные датчики. Для простоты их называют радарами, камерами и сонарами.

Полученная комплексная картинка передаётся в компьютер, который моделирует обстановку и создаёт образы, оценивая их опасность. Основная сложность заложена именно здесь, софт плохо справляется с распознаванием.

Борются с этой задачей разными способами, в частности, внедрением элементов нейросетей, получением информации извне (со спутников и от соседних автомобилей, а также сигналами дорожного обеспечения). Но уверенного стопроцентного распознавания нет.

Имеющиеся системы регулярно дают сбои, а каждый из них может закончиться очень печально. И таких случаев уже достаточно. На счету автопилотов имеется несколько вполне конкретных человеческих жертв. Человек просто не успевал вмешаться в управление, а иногда система даже не пыталась его предупредить или передать контроль.

Что такое ИСП

Если пассивные парковочные помощники появились на автомобилях достаточно давно, то интеллектуальная система помощи водителю при парковке начала активно внедряться только в XXI веке, и поначалу это была привилегия только элитных моделей авто.

Но постепенно, с развитием микроэлементной и программной базы, эти системы начались разрабатываться и внедряться многими автопроизводителями. Являясь ещё одной компонентой множества различных электронных устройств, облегчающих управление автотранспортным средством, такая система позволяет выполнять парковку в полуавтоматическом (автоматизированном)/автоматическом режиме. Последняя разновидность, по существу, не требует участия человека.

Современные парковочные системы рассчитаны на различные схемы постановки автомобиля на стоянку. Наиболее распространёнными считаются перпендикулярная (поперечная) и параллельная парковки, при этом параллельная схема намного сложнее в реализации, но именно она позволяет оптимизировать пространство дороги наилучшим образом. Неудивительно, что большая часть активных систем рассчитана на применение именно параллельной парковки.

Функционал таких парковочных систем может существенно различаться, но общим у них является возможность отключения и выполнения подобных манёвров только в ручном режиме.

Справедливости ради отметим, что те водители, которые уже привыкли пользоваться услугами множества датчиков, выключают системы парковки только в тех случаях, когда абсолютно уверены в безопасности постановки машины на стоянку/остановку (при отсутствии машин).

Но такое в современном мегаполисе встречается разве что глубокой ночью.

Как работают беспилотные автомобили

Беспилотные автомобили самостоятельно производят выбор оптимального движения от одного пункта до другого. Учитывается интенсивность движения, наличие пробок. Вся информация поступает через интернет с помощью специального программного обеспечения. Скорость, торможение, ускорение регулируется.

Машина распознаёт транспортные средства в любую погоду. Она производит движение и выбирает нужную опцию в дождь, снег, ветер. Происходит сканирование знаков дорожного движения, сигнальных огней светофора, которые она тоже замечает. Сканирование осуществляется датчиками и высокоточными картами. Происходит взаимодействие с различными сервисами. Усовершенствованные технологии позволяют определить нужную частоту и проводить движение в соответствии с её показателями.

Принципы работы беспилотного автомобиля сводятся к тому, что:

  • Вся местность генерируется благодаря дальномеру. Проводится сканирование объектов. Все данные от управляющего компьютера соединяются с информацией от Гугл. Это позволяет двигаться безопасно, не совершать аварийных ситуаций.
  • Радары позволяют видеть объекты на расстоянии. Они являются глазами автомобиля. Благодаря им происходит оценивание ситуаций, происходит учёт всех действий машин. Устройство определяет поведение транспортных средств и позволяет незамедлительно реагировать на все происходящие процессы на трассе.
  • Датчики положения помогают проследить, где находится транспортное средство на карте. GPS определяет маршрут, по которому происходит движение. Навигатор сообщает беспилотному автомобилю команды для действий.
  • Видеокамера фиксирует сигналы светофора, объекты, находящиеся совсем близко.
  • Компьютеру подаются сигналы, которые он обрабатывает и немедленно на них реагирует.

Практически вся информация находится в Гугл. В ней содержится большое количество разных ситуаций, с которыми сталкивались беспилотные автомобили: пешеходы на проезжей части, инвалидные коляски внезапно показались на дороге. Весь материал фиксируется, запоминается, тестируется и используется.

Персонализация и каналы адаптации

После переведения кодирования блоков управления в Audi A5 в режим онлайн некоторые биты кодировки можно найти только в адаптации. Дополнительно в адаптацию были включены новые параметры автомобиля, которые раньше адаптации не подлежали.

При введении адресного слова 46 можно провести следующие адаптации

Возврат персонализации всех ключей к заводским установкам

Для каждого из 4 ключей зажигания отдельно предусмотрены следующие значения адаптации

1. Разблокировка всех дверей автомобиля после подачи сигнала на отпирание с пульта дистанционного управления
2. Autolock активен / неактивен
3. Autolock активен / неактивен
4. Компоненты комфортного открывания:

  • Стекло со стороны водителя
  • Стекло со стороны переднего пассажира
  • Сдвижной люк

5. Вкл./выкл. автоматики задней шторки при включенной передаче заднего хода
6. Вкл./выкл. режима работы указателей поворота для движения по магистрали

Следующие каналы адаптации снова привязаны к конкретному автомобилю и одинаковы для всех ключей зажигания:

1. Пороговые значения срабатывания датчика наклона противоугонной системы автомобиля
2. Чувствительность системы охраны салона
3. Время задержки срабатывания сигнализации после открывания двери водителя механическим путем
4. Объекты управления комфортного открывания

 Стеклоподъемники

активирование / деактивирование через пульт дистанционного управления
активирование / деактивирование через личинку замка двери водителя
активирование / деактивирование через кнопку стеклоподъемника в двери водителя
активирование / деактивирование через емкостные датчики в наружных ручках дверей (важно только для расширенной комплектации „Advanced Key“)

 Сдвижной люк

активирование / деактивирование через пульт дистанционного управления
активирование / деактивирование через личинку замка двери водителя
активирование / деактивирование через кнопку стеклоподъемника в двери водителя
активирование / деактивирование через емкостные датчики в наружных ручках дверей (важно только для расширенной комплектации „Advanced Key“)

 Солнцезащитная шторка в крыше

активирование / деактивирование через пульт дистанционного управления
активирование / деактивирование через личинку замка двери водителя
активирование / деактивирование через кнопку стеклоподъемника в двери водителя
активирование / деактивирование через емкостные датчики в наружных ручках дверей (важно только для расширенной комплектации „Advanced Key“)

5. Объекты управления комфортного закрывания

Стеклоподъемники

активирование / деактивирование через пульт дистанционного управления
активирование / деактивирование через личинку замка двери водителя
активирование / деактивирование через кнопку стеклоподъемника в двери водителя
активирование / деактивирование через емкостные датчики в наружных ручках дверей (важно только для расширенной комплектации „Advanced Key“)

 Сдвижной люк

активирование / деактивирование через пульт дистанционного управления
активирование / деактивирование через личинку замка двери водителя
активирование / деактивирование через кнопку стеклоподъемника в двери водителя
активирование / деактивирование через емкостные датчики в наружных ручках дверей (важно только для расширенной комплектации „Advanced Key“)

 Солнцезащитная шторка в крыше

активирование / деактивирование через пульт дистанционного управления
активирование / деактивирование через личинку замка двери водителя
активирование / деактивирование через кнопку стеклоподъемника в двери водителя
активирование / деактивирование через емкостные датчики в наружных ручках дверей (важно только для расширенной комплектации „Advanced Key“)

Сложности, стоящие перед разработчиками систем обнаружения пешеходов

Поведение человека, его рост, характер жестов, цвет одежды и многие другие параметры слишком разнообразны, поэтому для создания эффективной системы обнаружения пешеходов необходимо создавать крайне сложную программу, способную анализировать все вышеперечисленные факторы. Для оперативной работы программы требуются значительные ресурсы компьютерной памяти и другие мощные и надежные компоненты. Оснащение автомобиля мощным, а значит, дорогостоящим компьютерным оборудованием приводит, прежде всего, к значительному увеличению его цены.

Вторая важная проблема, с которой сталкиваются разработчики, – наложение фигур, предметов, находящихся в руках у пешеходов, и цветов одежды, друг на друга, а так же на предметы или сооружения на заднем фоне. Это крайне затрудняет процесс распознавания отдельных фигур.

Когда человека за рулем сможет заменить машина?

Несмотря на обилие конкретных сроков реализации подобных проектов, все, которые уже прошли, были перенесены на будущее. Положение дел таково, что существующие прогнозы также не будут выполнены, поэтому в обозримом будущем полностью автономные автомобили не появятся, задача оказалась слишком сложна для оптимистов, которые планировали её быстро решить и на этом заработать.

Пока на прорывных технологиях можно только потерять средства и репутацию. А увлечение нейросистемами может привести к худшим результатам.

Уже доказано, что слишком умные автомобили могут начать лихачить на дорогах не хуже молодых начинающих водителей с теми же последствиями.

Резюме

Сегодня межсетевые экраны во взаимодействии с IPS и IDS-системами являются одним из ключевых средств обнаружения и защиты от действий злоумышленников. Системы IPS и IDS относительно легко настраиваются, просто управляются и могут обеспечить высокую точность мониторинга сетей.

Между IPS и IDS-системами есть отличия, обусловленные местом интеграции инструментов в цепочку обработки трафика, и особенности, определяющие спектр задач и ограничений. Именно поэтому, функционал межсетевых экранов лучше дополнять функционалом систем IDS и IPS, повышая уровень защиты. 

Межсетевые экраны, системы обнаружения и предотвращения вторжений — базовые элементы сетевой безопасности при построении периметровой системы защиты информации в любой компании. Широкий выбор относительно стоимости и функционала этих устройств может удовлетворить любого клиента. Решения есть, как в программном, так и в аппаратном исполнении, свободно распространяемые и проприетарные (частные), а также имеющие различные характеристики. Дополнения межсетевых экранов IDS и IPS помогают повысить эффективность работ служб информационной безопасности и своевременно реагировать на сетевые атаки. При этом не обязательно ограничиваться только этими решениями. Существуют и другие системы, способные обеспечить высокий уровень информационной безопасностиАлексей Антоновархитектор по кибербезопасности SberCloud

Любое средство защиты информации требует от администратора глубоких знаний его применения и до сих пор не теряет актуальности. При правильной настройке межсетевые экраны и IPS/IDS могут принести большую пользу для повышения уровня защищенности инфраструктуры организации.    

Для комплексной сетевой защиты корпоративных ресурсов в облаке SberCloud предлагает подключение межсетевого экрана NGFW.

Как работает система обнаружения пешеходов

Когда и (или) видеокамера засекают подвижные объекты (в системе компании Subaru, например, для этого используются две камеры) по ходу движения, система определяет направление перемещения пешехода, скорость движения и прогнозирует его местонахождение в момент появления автомобиля в точке обнаружения объекта (дальность срабатывания системы – за 40 метров до объекта). Убедившись в том, что впереди объект, похожий на пешехода, компьютер выводит картинку с камеры на экран мультимедийной системы.

Если же компьютер считает, что при имеющейся скорости движения автомобиля и пешехода возможно столкновение, подается звуковой сигнал. Если водитель реагирует (поворачивает руль или нажимает на тормоз), система помогает ему остановить машину при помощи системы аварийного торможения.

В настоящий момент системы обнаружения гарантируют безопасность на скорости не выше 30-35 км/ч. В алгоритм распознавания внесены образцы типовых предметов, которые могут находиться в руках, к примеру, зонтов или сумок. Однако в условиях плохой видимости (по причине ухудшения погодных условий, например) и ночью система обнаружения пока бесполезна.

Плюсы и минусы

К преимуществам можно отнести:

значительная экономия времени и пространства;

К ним можно отнести:

Сама система не стоит дорого, но весь обслуживающий материал – пульт, датчики и прочее – вещь довольно дорогая. Именно по этой причине система не вошла в широкие массы водителей.

  • В связи с частыми изменениями в законодательстве информация порой устаревает быстрее, чем мы успеваем ее обновлять на сайте.
  • Все случаи очень индивидуальны и зависят от множества факторов. Базовая информация не гарантирует решение именно Ваших проблем.

Поэтому для вас круглосуточно работают БЕСПЛАТНЫЕ эксперты-консультанты!

  1. Задайте вопрос через форму (внизу), либо через онлайн-чат
  2. Позвоните на горячую линию:
  3. Москва и Область — +7 (499) 110-56-12
  4. Санкт-Петербург и область — +7 (812) 317-50-97
  5. Регионы — 8 (800) 222-69-48

ЗАЯВКИ И ЗВОНКИ ПРИНИМАЮТСЯ КРУГЛОСУТОЧНО и БЕЗ ВЫХОДНЫХ ДНЕЙ.

Автоматическая парковка автомобиля, например, Park Assist (Парк Ассист или Ассистент автоматической парковки) на автомобилях Фольксваген – еще одна интеллектуальная современная система, позволяющая значительно облегчить повседневную жизнь водителя в переполненных мегаполисах. Исходя из классификации, данную парковочную систему можно отнести к активным вариантам, т.к. все происходит без непосредственного участия шофера либо с минимальным вмешательством.

Наиболее распространены следующие варианты интеллектуальной автоматической парковки автомобиля:

  • на авто марки Фольксваген – Park Assist и Park Assist Vision;
  • на машинах БМВ – Remote Park Assist System;
  • на автомобилях Лексус и Тойота – Intelligent Parking Assist System;
  • для моделей Опель – Advanced Park Assist;
  • для авто Форд и Мерседес – Active Park Assist.

Разные виды автоматических систем помогают как при параллельной так и при поперечной парковке. Электроника самостоятельно рассчитывает оптимальный угол поворота колес и скорость передвижения, определяет вписывается ли машина по габаритам и т.д.

Составными частями системы являются прежде всего специальные датчики (ультразвуковые), кнопка включения, исполнительные органы и центральный процессор. Как и в пассивных аналогах парковочной системы чаще всего устанавливаются именно ультразвуковые датчики, однако их дальность действия значительно увеличена и доходит до 4-5 метров. В разных вариантах сборки количество датчиков может различаться. На самых современных автомобилях устанавливается 12 датчиков: 4 с обеих сторон (по 2), а также по 4 спереди и сзади. Данное количество признано оптимальным для точной работы.

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle

JP3549569B2
(ja)

*

1993-04-272004-08-04ソニー エレクトロニクス インコーポレイテッド映像内の目標パターン探知方法

US20050047647A1
(en)

*

2003-06-102005-03-03Ueli RutishauserSystem and method for attentional selection

JP2007148835A
(ja)

*

2005-11-282007-06-14Fujitsu Ten Ltd物体判別装置、報知制御装置、物体判別方法および物体判別プログラム

JP2008021034A
(ja)

*

2006-07-112008-01-31Fujitsu Ten Ltd画像認識装置、画像認識方法、歩行者認識装置および車両制御装置

EP2215588B1
(en)

*

2007-11-282012-04-04Honda Research Institute Europe GmbHArtificial cognitive system with amari-type dynamics of a neural field

CN102201059A
(zh)

*

2011-05-202011-09-28北京大学深圳研究生院一种行人检测方法及装置

US8837820B2
(en)

*

2012-05-252014-09-16Xerox CorporationImage selection based on photographic style

US9275308B2
(en)

*

2013-05-312016-03-01Google Inc.Object detection using deep neural networks

US9070023B2
(en)

*

2013-09-232015-06-30Toyota Motor Engineering & Manufacturing North America, Inc.System and method of alerting a driver that visual perception of pedestrian may be difficult

CN104036258A
(zh)

*

2014-06-252014-09-10武汉大学一种基于稀疏表示处理低分辨率下的行人检测方法

CN104301585A
(zh)

*

2014-09-242015-01-21南京邮电大学一种运动场景中特定种类目标实时检测方法

CN104408725B
(zh)

*

2014-11-282017-07-04中国航天时代电子公司一种基于tld优化算法的目标重捕获系统及方法

CN104537360B
(zh)

*

2015-01-152018-01-02上海博康智能信息技术有限公司车辆未让行违章检测方法及其检测系统

CN105022990B
(zh)

*

2015-06-292018-09-21华中科技大学一种基于无人艇应用的水面目标快速检测方法

US10410096B2
(en)

*

2015-07-092019-09-10Qualcomm IncorporatedContext-based priors for object detection in images

US9569696B1
(en)

*

2015-08-122017-02-14Yahoo! Inc.Media content analysis system and method

US9740944B2
(en)

*

2015-12-182017-08-22Ford Global Technologies, LlcVirtual sensor data generation for wheel stop detection

CN106127164B
(zh)

*

2016-06-292019-04-16北京智芯原动科技有限公司基于显著性检测和卷积神经网络的行人检测方法及装置

Что нужно для работы беспилотного авто

Чтобы превратить обычную машину в беспилотную, в неё нужно установить дополнительное железо и алгоритмы:

  • радар;
  • лидар;
  • камеры;
  • датчики погодных условий;
  • датчики работы основных узлов автомобиля;
  • система компьютерного зрения и распознавания образов;
  • алгоритмы принятия решений — что машина должна сделать в разных штатных и нештатных ситуациях.

Инженеры чаще всего так и делают — берут серийный автомобиль, навешивают на него всё это железо и ставят внутрь компьютер для обработки сигналов и команд.

Беспилотный автомобиль Яндекса на базе серийной Тойоты. На крыше видны основные датчики, но это не всё, что нужно, чтобы машина стала беспилотной

Недостатки

Специалистам ещё есть над чем работать. Технологии предотвращения столкновения работают неудовлетворительно при плохой погоде и в тёмное время суток. Также влияет на качество работы дорожная разметка, её количество и качество. Если камера недостаточно хорошо различает разделительные линии, то работа системы снижается. Равно как и во время густого тумана, недостаточного освещения, снегопада и при других неблагоприятных условиях.

Глупо полностью полагаться на электронику. В любом случае водитель несёт ответственность за жизни людей и сохранность имущества. Эти системы нужно воспринимать как страховку и помощь, а не перекладывать на них всю работу водителя.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий