Неисправности и ремонт турбокомпрессоров
«Симптомами», которые могут говорить о неисправности прибора, могут быть следующие проявления:
- существенное снижение мощности двигателя машины;
- падение скорости;
- появление черного или синего дыма из выхлопной трубы;
- шум при работе мотора.
Среди наиболее распространенных неисправностей можно выделить следующие.
- Утечка воздуха или отработавших газов. Может происходить как из корпуса прибора, так и из патрубков. Приводит к недостаточной силе нагнетания воздуха в цилиндры и потере мощности. Проблема решается заменой прокладок или прибора целиком.
- Засорение или поломка клапана. Вызывает недостаточную подачу воздуха и потерю мощности мотора. Проблему решают путем чистки клапана или его замены.
- Утечка масла в турбину. Смазка компрессора осуществляется за счет общей системы смазки двигателя. Если масло начнет попадать в корпус приспособления, то начнет сгорать в цилиндрах. Это приводит к снижению КПД двигателя и появлению синего дыма. Проблему решают путем устранения неисправности системы смазки.
- Нарушение вращения ротора. Вследствие ослабления креплений или поломки подшипников может нарушиться свободных ход вала, из-за чего эффективность прибора также упадет. Проблему решают путем подтяжки всех крепления или замены подшипников.
Также следует иметь в виду, что поломка может произойти из-за физического износа устройства, который происходит по окончании срока службы. Он в среднем составляет 150 – 200 тысяч километров пробега.
Конструкция турбины
Корпус турбины имеет непростую геометрию. Воздух попадает к нагнетателю через спиралевидный канал с постепенно сужающимся диаметром, что в свою очередь также влияет на повышение рабочего давления турбины. В зависимости от предназначения мотора, конструкция корпуса наддува (улитки) может быть различной. У грузовых автомобилей поток выхлопных газов должен быть разделен во избежание разрушительного резонанса, а в случае разделения потока газов, резонанс используется для более эффективной работы турбины.
Ротор турбины и ось изготовлены из разных материалов, поскольку работают в разных условиях. Процесс изготовления наддува выглядит следующим образом — ось и ротор раскручиваются в противоположном направлении до высокой скорости и во время вращения ротор насаживается на ось. Таким образом получают прочную неразъемную спайку. В конструкции оси есть ещё одна хитрость. В месте усадки ротора она полая, что позволяет затруднить передачу тепла от ротора к оси и улучшить охлаждение сопряжённых элементов. После точной финишной обработки ось балансируется и устанавливается в корпус.
Турбина имеет сложную систему смазки и такую же сложную систему динамических уплотнителей, что и диктует высокую цену турбины в сборе. Они называются динамическими, потому что работают, используя принцип разницы давления в разных частях турбины:
Ось турбины непостоянного диаметра и эти вызывается разница давления, которая препятствует проникновению масла в турбину.
С обеих сторон оси уплотнители установлены в пазах, кроме того, они служат преградой для передачи избыточного тепла на корпус наддува..
Внутренняя геометрия корпуса оси также создаёт препятствие проникновению масла в ротор.
Из корпуса наддува масло вытесняется в полость оси, откуда иго избыток поступает по маслопроводу в систему смазки двигателя.
Принцип работы турбонаддува
Схема работы турбонаддува двигателя
Принцип работы системы турбонаддува заключается в следующем:
- Отработавшие газы двигателя, проходя через турбокомпрессор, раскручивают турбинное колесо.
- Вращение турбинного колеса передается компрессорному, поскольку они закреплены на одном валу.
- Компрессор сжимает воздух, поступающий из воздухозаборника, и направляет его в интеркулер.
- В интеркулере воздух охлаждается и поступает на впуск в цилиндры двигателя.
В турбокомпрессоре предусматривается возможность регулировки давления выхлопных газов на лопасти турбины с целью не допустить превышение давления наддува в системе. Это осуществляется с помощью перепускного клапана, который приводится в движение пневмо- или электроприводом. В свою очередь, управление приводом осуществляется электронным блоком управления, который считывает информацию с датчика давления.
Что еще необходимо турбомотору
Кроме турбокомпрессора для нормальной работы турбомотора нужен интеркулер. Он охлаждает излишне горячий воздух перед поступлением в цилиндры. Интеркулер очень похож на радиатор охлаждения ДВС, только сечение трубок здесь намного больше.
Блоу-офф (Blow-off) и Байпас (Bypass) клапаны. Они ставится зеркально вестгейту. Если перепускной клапан вестгейт управляет отработанными газами, то Байпас и Блоу-офф управляют воздухом наддува. Их задача “стравить” избыточное давление во впускном коллекторе при резком сбросе газа. Единственное их различие, что делают это они по разному: Блоу-офф выбрасывает лишний воздух наружу, а Байпас направляет избыток воздуха обратно во впускной коллектор.
Байпас клапан
Блоу-офф клапан
Для увеличенного потока воздуха требуется более производительный воздушный фильтр. Часто применяют фильтр “нулевого сопротивления”. И конечно же нужна мелочевка: патрубки, хомуты, уплотнители, крепеж и т.д.
Турбонаддув – назначение, устройство и принцип работы
Турбонаддув – это такой способ агрегатного наддува, при котором подача воздуха в цилиндры двигателя происходит под давлением, нагнетаемым действием энергии отработавших газов. Сегодня такой метод – самый эффективный, призванный увеличивать мощность двигателя, не повышая объёма его цилиндров и частоты вращения коленчатого вала. Кроме этого, использование турбонаддува даёт экономию топлива в соотношении расхода к мощности и уменьшает токсичность отработавших газов, осуществляя более полное сгорание топлива.
Применение система турбонаддува находит на обоих типах двигателей – и на бензиновых, и на дизельных. Однако на последних она гораздо эффективнее за счёт их более высокой степени сжатия и сравнительно небольшой частоты вращения коленчатого вала.
Использование же турбонаддува для бензиновых двигателей ограничено, во-первых, вероятностью наступления детонации, обусловленной значительным увеличением оборотов двигателя, а во-вторых, перегревом турбонагнетателя из-за повышенной температуры отработавших газов – около 1000°С, в то время как у дизелей она составляет порядка 600°С.
Устройство
Основная часть компонентов турбонаддува – это типовые элементы впускной системы. Присутствие же в системе турбокомпрессора, интеркулера и конструктивно новых элементов управления становится отличительной особенностью именно турбонаддува.
Хотя конструкции отдельных систем турбонаддува и различаются, можно обозначить их общие компоненты. Помимо вышеперечисленных турбокомпрессора, интеркулера и элементов управления это воздухозаборник с воздушным фильтром, дроссельная заслонка, впускной коллектор, напорные шланги и соединительные патрубки, а в некоторых системах ещё и впускные заслонки.
Турбокомпрессор или турбонагнетатель — главный конструктивный компонент системы турбонаддува. Он нагнетает воздух во впускную систему.
Его устройство выглядит следующим образом:
Устройство турбонагнетателя: 1 — корпус компрессора; 2 — вал ротора; 3 — корпус турбины; 4 — турбинное колесо; 5 — уплотнительные кольца; 6 — подшипники скольжения; 7 — корпус подшипников; 8 — компрессорное колесо.
Турбинное колесо, находясь в специальном теплоустойчивом корпусе, превращает энергию потока отработавших газов в энергию вращения и перенаправляет её на компрессорное колесо. С его помощью воздух всасывается, сжимается и подаётся в цилиндры двигателя. Оба эти колеса жёстко закреплены на роторном валу, вращающемся на подшипниках скольжения плавающего вида. Интеркулер является радиатором жидкостного или воздушного типа. Он охлаждает сжатый воздух, увеличивая его плотность и давление.
Главный элемент управления системой турбонаддува – это регулятор давления наддува, он, по сути, является перепускным клапаном (wastegate). Его задача – ограничивать энергию отработавших газов и направлять часть их потока в обход турбинного колеса. Таким образом, достигается оптимальная величина давления наддува. Привод перепускного клапана – электрический или пневматический. Для его срабатывания система управления двигателем подаёт сигнал от датчика давления наддува.
Как работает турбонаддув
Принцип работы турбонаддува берёт за основу использование энергии отработавших газов. Их струя заставляет вращаться турбинное колесо, передающее вращение через роторный вал компрессорному колесу. С помощью последнего происходит сжатие воздуха и его нагнетание в систему.
Принцип работы турбонаддува
Интеркулер охлаждает воздух, нагретый при сжатии, после чего тот подаётся в цилиндры двигателя.
Хотя система турбонаддува и не связана жёстко с коленчатым валом, её эффективность напрямую зависит от частоты оборотов двигателя. Увеличение оборотов коленчатого вала ведёт к повышению энергии отработавших газов и, соответственно, частоты вращения турбины, что влечёт за собой более интенсивное поступление воздуха в цилиндры двигателя.
Виды турбин
Турбины бывают нескольких видов.
- Традиционный. Наиболее простой тип турбокомпрессора. Его устройство и принцип действия описаны выше.
- С изменяемой геометрией. В этой разновидности устройства регулировка объема поступающих на турбинное колесо отработавших газов осуществляется не за счет впускного клапана, а за счет изменения положения лопастей колеса. Таким образом, удается максимально точно согласовать нагнетание воздуха в цилиндры и количество оборотов. Чаще всего подобная конструкция используется на дизельных моторах. Однако ее применяют и на бензиновых (обычно на гоночных автомобилях).
- Раздельный (также его называют twin-scroll). Отличительная особенность этой разновидности турбины заключается в том, что на крыльчатку отработавшие газы поступают сразу несколькими путями. Обычно для этого используется пара трубок (по 2 на каждую пару цилиндров). Одна из них предназначена для быстрого реагирования прибора, а вторая – для постоянного поддержания мощности двигателя на достаточном уровне.
- Электрический. В отличие от всех остальных разновидностей турбокомпрессоров, электрический работает на за счет выхлопных газов, а от электродвигателя. Он, в свою очередь, запитывается от бортовой электросети транспортного средства. Подобная конструкция позволяет максимально эффективно регулировать нагнетание воздуха в цилиндры – ведь теперь оно не зависит от давления отработавших газов. Чаще всего сегодня электрокомпрессоры устанавливают на гибридные авто.
- Гибридные. Отличается тем, что представляют собой смесь традиционного и электрического компрессора. Основную часть воздушного потока генерирует именно турбина. Однако если его недостаточно, начинает работать электрический нагнетатель и помогает турбокомпрессору. В результате удается добиться максимально стабильной работы приспособления.
- Механический. Строго говоря, этот тип нагнетателя не является турбинным, хотя и выполняет ту же самую функцию. Он работает не за счет выхлопных газов, а за счет энергии двигателя. Она передается с карданного вала посредством приводного ремня. Главный недостаток устройств, созданных по этой схеме, заключается в том, что они отнимают часть полезной энергии у мотора и в целом менее эффективны, чем турбины.
Как проверить клапан управления турбиной
Способы проверки зависят от типа клапана, который может быть электромагнитный или вакуумный. Особенность проверки их заключается в том, что их нет необходимости снимать с автомобиля. Рассмотрим способ проверки каждого устройства индивидуально.
Как проверить электромагнитный клапан управления турбиной
Чтобы проверить данное устройство, его не требуется снимать с машины. Достаточно разогнать двигатель на холостых оборотах до 3000 и понаблюдать за лапкой заслонки. Она должна перемещаться, открывая и закрывая заслонку, регулируя таким образом давление в турбине. Если же она не функционирует, значит электромагнитный клапан управления турбиной вышел из строя. Кроме того, неработоспособность клапана отразится на панели управления в виде ошибки датчика абсолютного давления, сообщающего о превышении нагрузки двигателя.
Как проверить клапан вакуумного типа
Первое, что необходимо сделать, это проверить целостность проводки. С помощью вольтметра измеряется напряжение на клеммах клапана. Если прибор показывает 12 вольт, значит питание к устройству подается. Вторым шагом будет замер сопротивления, для чего используется мультиметр, переключенный в режим омметра. При нормально работающем устройстве данный показатель будет примерно 15 Ом. Далее необходимо выполнить диагностику на слух. При хорошо прогретом двигателе вакуумный клапан управления турбиной должен работать беззвучно. Если же слышится писк, значит его обмотка замкнута и он требует замены.
Как устроена турбина, принцип её работы
Стандартный турбокомпрессор состоит из:
- Корпус. Изготовлен из жаропрочных стали. Он имеет спиралевидную форму с двумя разнонаправленными трубами, снабженными фланцами для установки в системе наддува.
- Турбинное колесо. Оно преобразует энергию выхлопа во вращение вала, на котором оно жестко закреплено. Изготовлено из жаропрочных материалов.
- Колесо компрессора. Оно получает вращение от турбинного колеса и нагнетает воздух в цилиндры двигателя. Рабочее колесо компрессора часто изготавливается из алюминия, что снижает потери энергии. Температурный режим в этой зоне приближен к нормальному и использование жаропрочных материалов не требуется.
- Вал турбины. Соединяет колеса турбины (компрессорное и турбинное).
- Подшипники скольжения или шариковые. Нужны для соединения вала в корпусе. Конструкция может быть оснащена одной или двумя опорами (подшипниками). Последние смазываются общей системой смазки двигателя.
- Перепускной клапан. Предназначен для регулирования потока выхлопных газов, действующих на турбинное колесо. Это позволяет вам контролировать мощность наддува. Клапан с пневматическим приводом. Его положение контролируется ЭБУ двигателя, который получает сигнал от датчика скорости.
Основной принцип работы турбины в бензиновых и дизельных двигателях заключается в следующем:
- Выхлопные газы направляются в корпус турбокомпрессора, где они действуют на лопатки турбины.
- Турбинное колесо начинает вращаться и ускоряться. Скорость вращения турбины на высоких оборотах может достигать 250 000 об / мин.
- После прохождения турбинного колеса выхлопные газы сбрасываются в выхлопную систему.
- Рабочее колесо компрессора вращается синхронно (поскольку оно находится на одном валу с турбиной) и направляет поток сжатого воздуха в промежуточный охладитель, а затем во впускной коллектор двигателя.
Дополнительные элементы системы турбонаддува
Если говорить о конкретных модификациях мотора, а также о компоновке различных элементов в подкапотном пространстве, турбокомпрессор может иметь ряд дополнительных элементов. Мы уже упоминали такие детали системы, как Wastegate и Blow-Off. Давайте рассмотрим их более подробно.
Клапан Blow-off
Блоу-офф представляет собой перепускной клапан. Данное устройство устанавливается в воздушной системе. Местом расположения становится участок между выходом из компрессора и дроссельной заслонкой. Главной задачей блоу-офф клапана становится предотвращение выхода компрессора на характерный режим работы surge.
Под таким режимом стоит понимать момент резкого закрытия дросселя. Если описать происходящее простыми словами, то скорость воздушного потока и сам расход воздуха в системе резко понижаются, но турбина еще определенное время продолжает вращение по инерции. Инерционно турбина вращается с той скоростью, которая уже больше не соответствует новым потребностям мотора и упавшему таким образом расходу воздуха.
Последствия после циклических скачков давления воздуха за компрессором могут быть плачевны. Явным признаком скачков является характерный звук воздуха, который прорывается через компрессор. С течением времени из строя выходят опорные подшипники турбины, так как они испытывают сильные нагрузки в момент указанных скачков давления при сбросе газа и последующей работе турбины в этом переходном режиме.
Блоуофф реагирует на разницу давлений в коллекторе и срабатывает благодаря установленной внутри пружине. Это позволяет выявить момент резкого перекрытия дросселя. Если дроссель резко закрылся, тогда блоу-офф осуществляет стравливание в атмосферу внезапно появившегося в воздушном тракте избытка давления. Это позволяет существенно обезопасить турбокомпрессор и уберечь его от избытка нагрузок и последующего разрушения.
Клапан Wastegate
Данное решение представляет собой механический клапан. Вестгейт установливают на турбинной части или же на самом выпускном коллекторе. Задачей устройства является обеспечение контроля за тем давлением, которое создает турбокомпрессор.
Стоит отметить, что некоторые дизельные силовые агрегаты используют в своей конструкции турбины без вейстгейта. Для моторов, которые работают на бензине, в большинстве случаев наличие такого клапана является обязательным условием.
Главной задачей вейстгейта становится обеспечение возможности беспрепятственного выхода для выхлопных газов из системы в обход турбины. Запуск части отработавших газов в обход позволяет осуществлять контроль за необходимым количеством энергии этих газов. Взаимосвязь очевидна, ведь именно выхлоп вращает через вал колесо компрессора. Данный способ позволяет эффективно управлять давлением наддува, которое создается в компрессоре. Наиболее частым решением становится контроль вейстгейта за давлением наддува, который осуществляется при помощи противодавления встроенной пружины. Такая конструкция позволяет контролировать обходной поток выхлопных газов.
Вейстгейт может быть как встроенным, так и внешним. Встроенный вейстгейт конструктивно имеет заслонку, которая встроена в турбинный хаузинг. Хаузинг в народе попросту называют «улитка» турбины. Дополнительно wastegate имеет пневматический актуатор и тяги от данного актуатора к дроссельной заслонке.
Гейт внешнего типа представляет собой клапан, который установлен на выпускной коллектор перед турбиной. Необходимо заметить, что внешний гейт имеет одно неоспоримое преимущество сравнительно со встроенным. Дело в том, что сбрасываемый им обходной поток можно возвращать обратно в выхлопную систему достаточно далеко от выхода из турбины, а на спортивных авто и вовсе осуществить прямой сброс в атмосферу. Это позволяет заметно улучшить прохождение отработавших газов через турбину благодаря тому, что наблюдается отсутствие разнонаправленных потоков
Все это очень важно применительно к ограниченному компактному объему «улитки».
Виды нагнетателей
Справедливости ради надо сказать, что первыми появились механические нагнетатели (kompressor, supercharger), которые приводятся в действие механической энергией вырабатываемой двигателем. Различают несколько типов механических нагнетателей: – центробежные, наиболее похожие на турбонаддув, поскольку воздух засасывается центробежной крыльчаткой; – нагнетатели типа “Рутс”(Roots), в котором воздух нагнетается двумя роторами, как в маслонасосе; – винтовые нагнетатели (Lysholm), по принципу похожие на Roots, но вместо двух роторов с лопастями применены винтовые роторы;
Области применения турбокомпрессоров
Турбокомпрессор, приводимый в действие отработавшими газами, в его настоящей форме уходит корнями к работам Альфреда Бюхи (1905), который уже тогда увидел потенциал объединения наддува и перекрытия клапанов для очистки остаточных отработавших газов. Турбокомпрессоры, приводимые в действие отработавшими газами, традиционно применялись для наддува на больших дизельных двигателях грузовых автомобилей, судов и железнодорожных локомотивов, а также сельскохозяйственных и строительных машин.
Применение турбокомпрессоров на автомобильных дизельных двигателях
Первые дизельные двигатели легковых автомобилей, оборудованные турбокомпрессорами, приводимыми в действие отработавшими газами, увидели свет в середине 1970-х годов. Появление «перепускной заслонки» для регулирования давления наддува окончательно утвердило концепцию двигателя, ориентированного на крутящий момент, и позволило значительно повысить гибкость. Дальнейшее повышение рабочих характеристик легковых автомобилей было достигнуто за счет применения систем прямого впрыска топлива (1987) и турбокомпрессоров с изменяемой геометрией турбины (1996) или систем двухступенчатого турбонаддува (2004). Результатом этих инноваций стало заметное увеличение на европейских рынках доли автомобилей с дизельными двигателями. В настоящее время в Европе все дизельные двигатели легковых и коммерческих автомобилей оборудуются турбокомпрессорами, приводимыми в действие отработавшими газами и промежуточными охладителями (охладителями наддувочного воздуха).
Применение турбокомпрессоров на легковых автомобилях с бензиновыми двигателями
Применение турбонаддува бензиновых двигателей первоначально оставалось резервом повышения мощности только для мощных двигателей спортивных автомобилей и из-за неадекватной управляемости («запаздывания») турбонаддув относительно редко применялся на серийно выпускаемых легковых автомобилях. Однако в дальнейшем появилась тенденция к применению турбонаддува на бензиновых двигателях малой и средней мощности. В дополнение к повышению к.п.д., одна из основных целей заключалась в том, чтобы избежать увеличения количества цилиндров и связанного с этим увеличения размеров двигателя и расхода топлива.
В отличие от дизельных двигателей, в настоящее время, хотя и в меньшей степени, применяются нагнетатели с механическим приводом (по соображениям, обусловленным рынком, а также благодаря превосходным характеристикам в переходных режимах, когда требуется быстрое увеличение давления наддува). В настоящее время бензиновые двигатели с прямым впрыском топлива, оборудованные турбокомпрессорами, приводимыми в действие отработавшими газами, практически достигли уровня двигателей с нагнетателями с механическим приводом в отношении скорости увеличения давления наддува в переходных режимах.
В настоящее время для повышения мощности и крутящего момента бензиновых двигателей с небольшим рабочим объемом при относительно небольшой частоте вращения коленчатого вала применяются комбинации механического наддува и турбонаддува с использованием отработавших газов (комбинированный наддув).
В то время как турбокомпрессор, приводимый в действие отработавшими газами, с изменяемой геометрией турбины является стандартным нагнетателем для дизельных двигателей, высокие температуры и затраты, связанные с использованием этой технологии, до сих пор позволяют использовать ее для бензиновых двигателей только в ограниченной степени, в некоторых сегментах рынка.
В отношении содержания вредных веществ в отработавших газах и расхода топлива, а также иных рабочих характеристик важность турбонаддува при помощи турбокомпрессоров, приводимых в действие отработавшими газами, на разрабатываемых новых двигателях с малым рабочим объемом и уменьшенным количеством цилиндров будет возрастать. Сегодня мы наблюдаем резкий рост выпуска бензиновых двигателей с турбонаддувом, и в течение нескольких следующих лет ожидается Резкий рост этого сектора рынка
Почему турбина на дизеле практически вечная?
Если сравнить турбину на бензиновом двигателе и взять средний пробег 90000-120000 км. и обычную турбину с дизельного мотора с пробегом 250000 км.а то и более.Работа турбины на бензине и на дизеле практически идентична. У турбины есть горячая часть и холодная.Горячая часть работает на энергии выхлопных газов которые идут с выпускного коллектора и раскручивает эту часть турбины. Она валом соединена с холодным компрессорным колесом которое раскручивается до высоких оборотов и нагнетает воздух в цилиндры двигателя. Берёт воздух с окружающей среды. За счёт этого воздушно топливной смеси у нас становится больше и растёт мощность двигателя.
Так почему дизельные турбины ходят дольше?
- Это температура выхлопа.У бензина она составляет 800-900 градусов Цельсия , а у дизеля 500-600 градусов Цельсия. (Это в среднем.) Потому что КПД дизельного двигателя намного больше и энергия от сгоревшей смеси идет в работу, а у бензинового идёт на нагрев. Чем выше температура выхлопных газов тем сильнее разогревается турбина и масло которое смазывает подшипники ( втулки) может пригорать как в каналах так и в подшипниках. Поэтому смазка турбины будет происходить намного хуже и турбина может полностью за коксоваться и масло перестанет поступать. Масло не только смазывает но и отводит излишнюю температуру. Так как у бензинового движка температура выхлопа выше, значит турбина выходит из строя раньше срока. А на дизеле температура выхлопа ниже и турбина чувствует себя лучше.
- Обороты двигателя.У бензина мотор работает в среднем 4000-6000 об. мин. А дизель в среднем 1500-2000 об. мин. Соответственно когда идёт выхлоп у бензинового двигателя то выхлопных газов проходит через турбину больше и турбина раскручивается быстрее. У дизеля обороты меньше и выхлоп не такой интенсивный и турбина раскручивается не так быстро как на бензине. Меньше оборотов больше ресурс турбины.У бензинового агрегата турбина развивает 100000-150000 об. мин. А дизеля показатели намного меньше. На бензине ставят клапана для сброса давления чтобы турбину не разорвало. На дизеле они тоже есть но дизель работает на меньших оборотах.
- Масло.База у бензинового масла и у дизельного практически одинаковая. Но дизель работает на тяжёлом топливе и при сгорании образуется много серы. Сера твёрдое вещество и при оседании на деталях выступает в роли абразива. Поэтому в дизельное масло добавляют соответствующие мощные присадки для удаления серы и возможность держать в себе не давая оседать на трущихся деталях. А у бензинового масла таких присадок нет. Значит дизельное масло лучше смазывает турбину отводит окисления,серу и не пригорает, отводит тепло.
- Интервалы замены масла.У дизельных моторов масло нужно менять чаще. Примерно 5000-7000 км. На бензине 8000-10000 км. Значит на дизеле масло чище и намного лучше смазывает турбину и поэтому турбина работает дольше на дизеле.