Система непосредственного впрыска топлива в бензиновых двигателях: принцип работы

Типы смесеобразования

Используя непосредственный впрыск топлива, инженерам удалось снизить расход бензина. И все достигнуто возможностью использования нескольких типов смесеобразования. То есть под определенные условия работы силовой установки подается свой тип смеси. Причем система контролирует и управляет не только подачей топлива, для обеспечения того или иного типа смесеобразования устанавливается еще и определенный режим подачи воздуха в цилиндры.

Всего же прямой впрыск способен обеспечить два основных типа смеси в цилиндрах:

  • Послойная;
  • Стехиометрическая гомогенная;

Это позволяет подобрать смесь, которая при определенной работе мотора, обеспечит наибольшее КПД.

Послойное смесеобразование позволяет двигателю функционировать на очень бедной смеси, в которой массовая часть воздуха больше топливной части в более чем 40 раз. То есть в цилиндры подается очень большое количество воздуха, а затем в нее добавляется немного топлива.

В нормальных условиях такая смесь от искры не загорается. Чтобы воспламенение произошло, конструкторы придали днищу поршня особую форму, обеспечивающую завихрение.

При таком смесеобразовании в камеру сгорания воздух, направленный заслонкой, поступает на большой скорости. В конце такта сжатия форсунка впрыскивает топливо, которое достигая днища поршня, за счет завихрения поднимается вверх к свече зажигания. В результате в зоне электродов смесь является обогащенной и легковоспламенимой, в то время как вокруг этой смеси находится воздух практически без частиц топлива. Поэтому такое смесеобразование и получило название послойного – внутри имеется слой с обогащенной смесью, поверх которого находится еще один слой, практически без топлива.

Данное смесеобразование обеспечивает минимальное потребление бензина, но и приготавливает такую смесь система лишь при равномерном движении, без резких ускорений.

Стехиометрическое смесеобразование – это изготовление топливной смеси в оптимальных пропорциях (14,7 части воздуха на 1 часть бензина), что обеспечивает максимальный выход мощности. Такая смесь уже воспламеняется легко, поэтому надобности в создании обогащенного слоя возле свечи не требуется, наоборот, для эффективного сгорания необходимо, чтобы бензин равномерно распределился в воздухе.

Поэтому топливо впрыскивается форсунками на также сжатия, и до воспламенения оно успевает хорошо перемещаться с воздухом.

Такое смесеобразование обеспечивается в цилиндрах во время ускорений, когда необходим максимальный выход мощности, а не экономичность.

Конструкторам пришлось также решать вопрос с переходом двигателя с бедной смеси на обогащенную во время резких ускорений. Чтобы не произошло детонационного сгорания, во время перехода используется двойной впрыск.

Первая закачка топлива выполняется на такте впуска, при этом топливо выступает в качестве охладителя стенок камеры сгорания, что исключает детонацию. Вторая порция бензина подается уже на конце такта сжатия.

Система непосредственного впрыска топлива благодаря применению сразу нескольких типов смесеобразования, позволяет неплохо экономить топливо без особого влияния на мощностные показатели.

Во время ускорений двигатель работает на обычной смеси, а после набора скорости, когда режим движения размеренный и без резких перепадов, силовая установка переходит на очень обедненную смесь, тем самым экономя топливо.

В этом и кроется основное достоинство такой системы питания. Но есть у нее и немаловажный недостаток. В топливном насосе высокого давления, а также в форсунках используются прецизионные пары с высокой степенью обработки. Именно они и являются слабым местом, поскольку эти пары очень чувствительны к качеству бензина. Наличие сторонних примесей, серы и воды способно вывести ТНВД и форсунки из строя. Дополнительно, бензин обладает очень слабыми смазывающими свойствами. Поэтому износ прецизионных пар выше, чем у того же дизельного мотора.

К тому же сама система непосредственной подачи топлива конструктивно более сложная и дорогостоящая, чем та же система раздельного впрыска.

Главная система дозирования топлива

Указанная главная дозирующая система является таким элементом, который встречается в конструкции практически любого карбюратора. Актуальные версии получили пневматическую систему для компенсации состава топливовоздушной рабочей смеси. В основе системы лежит 1 главный топливный жиклер и 1 главный воздушный жиклер. Данные жиклеры выходят в колодец, который называют эмульсионным.

Эмульсионный колодец расположен вертикально или под наклоном зависимо от модели и модификации карбюратора. Поток воздуха проходит по жиклеру для подачи воздуха и попадает в эмульсионную трубку. Трубка имеет ряды отверстий, расположенных вертикально. Между эмульсионной трубкой и стенками эмульсионного колодца создается топливовоздушная эмульсия первичного типа. Дальнейшим маршрутом эмульсии становится смесительная камера, куда она движется по каналу и попадает в распылитель. Главный топливный жиклер находится в нижней части. По этой причине уровень горючего по мере расходования эмульсии из распылителя склонен к подъему. Так происходит благодаря поступлению горючего из поплавковой камеры. Количество поступающего топлива ограничивает топливный жиклер.

Снижение уровня горючего в эмульсионном колодце означает, что в эмульсию попадает большее количество воздуха, который  проходит через отверстия в эмульсионной трубке. Итогом становится возрастание доли воздуха в рабочей смеси, что и определяет большую степень компенсации. Встречаются также системы, когда бензин и воздух сразу попадают внутрь трубки. Ранние конструкции имели систему дозирования с параллельными жиклерами и диффузорами, расположенными последовательно. В таких устройствах за компенсацию практически полностью отвечала система холостого хода. Также делался упор на упругость пластин, которые открывали доступ для потока воздуха в более крупном диффузоре. Компенсационный параллельный жиклер обеспечивал подачу топлива.

Конструктивно простые карбюраторы авто с небольшим рабочим объемом мотора имели главную систему дозирования, которая состояла из компенсационного колодца и  компенсационного ограничительного жиклера. Такое решение было неспособно осуществить значительную компенсацию и обеспечить подачу должного количества топлива во всех случаях. Для гибкой эксплуатации во всех режимах работы ДВС такие карбюраторы не подходили.

Более совершенные разработки дозирующей системы карбюраторного впрыска способны обеспечивать такую гибкость рабочей топливовоздушной смеси, которая находится на отметке от 1/14 до 1/17, где первая цифра указывает на весовую часть бензина, а вторая воздуха. Главные режимы работы мотора становятся экономичными  благодаря системе дозирования. Система реализует приготовление обедненных составов около 1/16 или 1/16,5.

Виды инжекторов

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электронные элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует три типа инжекторных систем впрыска, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

  1. Центральная

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

2. Распределенная

Распределенный впрыск топлива

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У такого типа  инжекторных двигателей топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

3. Непосредственная

Система непосредственного впрыска топлива

Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она сложная по конструкции и очень требовательна к качеству бензина.

Основные недостатки впрыска топлива

Все преимущества системы с непосредственным впрыском топлива достигаются только при использовании бензина, качество которого соответствует определенным критериям. В них и следует разобраться. Требования к октановому числу у системы больших особенностей не имеют. Хорошее охлаждение топливовоздушной смеси достигается и при использовании бензинов, имеющих октановые числа от 92 до 95.

Наиболее жесткие требования выдвигаются именно к очистке бензина, его составу, содержанию свинца, серы и грязи. Серы быть вообще не должно, так как ее наличие приведет к скорому износу топливной аппаратуры и выходу из строя электроники. К числу недостатков также следует отнести увеличение стоимости системы. Это вызвано усложнением конструкции, которое в свою очередь приводит к увеличению себестоимости компонентов.

Итоги

Анализируя вышеприведенную информацию, можно с уверенностью сказать, что система с непосредственным впрыском топлива в камеру сгорания является более перспективной и современной, чем впрыск с распределением. Она позволяет существенно повышать экономичность двигателя за счет высокого качества топливовоздушной смеси. Основным недостатком системы является наличие высоких требований к качеству бензина, большая стоимость ремонта и обслуживания. А при использовании бензина низкого качества потребность в более частом ремонте и обслуживании сильно возрастает.

Проголосуйте, понравилась ли вам статья?

Режимы работы MPI

Распределенный впрыск может работать в разных режимах. Все зависит от программного обеспечения, которое установлено в микропроцессоре блока управления, а также от модификаций форсунок. Каждый тип распыления бензина имеет свои особенности работы. Если коротко, то работа каждого из них сводится к следующему:

  • Режим одновременного впрыска. Такой тип инжекторов уже давно не используется. Принцип следующий. Микропроцессор настроен на синхронное распыление бензина одновременно во все цилиндры. Система настроена так, чтобы при начале такта впуска в одном из цилиндров инжектор впрыскивал топливо во все патрубки впускного коллектора. Минус такой схемы в том, что 4-тактовый мотор будет работать от последовательного срабатывания цилиндров. Когда один поршень выполняет такт впуска, в остальных работает другой процесс (сжатие, рабочий ход и выпуск), поэтому топливо нужно исключительно для одного котелка за весь цикл двигателя. Остальной бензин просто находился во впускном коллекторе, пока не откроется соответствующий клапан. Такая система использовалась в 70-80-х годах прошлого столетия. В те времена бензин стоил дешево, поэтому его перерасход мало кого беспокоил. Также из-за чрезмерного обогащения смесь не всегда качественно сгорала, и поэтому в атмосферу выбрасывалось большое количество вредных веществ.
  • Попарный режим. В этом случае инженеры сократили расход топлива путем сокращения количества цилиндров, которые одновременно получают требуемую порцию бензина. Благодаря такому улучшению получилось сократить вредные выбросы, а также расход топлива.
  • Последовательный режим или распределение топлива по фазам ГРМ. На современных машинах, которые получают распределительный тип топливной системы, применяется данная схема. В этом случае электронный блок управления будет управлять каждой форсункой отдельно. Чтобы процесс сгорания ВТС был максимально эффективным, электроника обеспечивает небольшое опережение впрыска, прежде чем откроется впускной клапан. Благодаря этому в цилиндр поступает уже готовая смесь воздуха и топлива. Распыление производится через одну форсунку за полный цикл мотора. В четырехцилиндровом ДВС топливная система срабатывает идентично системе зажигания обычно в последовательности 1/3/4/2.

Последняя система зарекомендовала себя приличной экономичностью, а также высоким показателем экологичности. По этой причине для улучшения впрыска бензина разрабатываются разные модификации, в основу которых лег принцип работы фазированного распределения.

Среди производителей топливных систем, обеспечивающих распределительный впрыск бензина, компания Bosch занимает ведущие позиции. В ассортименте продукции имеется три разновидности ТС:

  1. K-Jetronic. Это механическая система, распределяющая бензин по распылителям. Срабатывает она непрерывно. В транспортных средствах, производимых концерном BMW, такие моторы имели аббревиатуру MFI.
  2. KE-Jetronic. Данная система является модификацией предыдущей, только управление процессом осуществляется при помощи электроники.
  3. L—Jetronic. Данная модификация оснащается мдп-форсунками, которые обеспечивают импульсную подачу топлива при конкретном давлении. Особенность такой модификации заключается в том, что работа каждого распылителя корректируется в зависимости от настроек, запрограммированных в ЭБУ.

Достоинства и недостатки реально работающих конструкций

Всё идеально работает только при теоретическом рассмотрении системы прямого впрыска. На практике возникают сложности.

  1. Бензин обладает посредственной смазывающей способностью, в отличие от дизельного топлива. Поэтому ТНВД и форсунки работают в условиях дефицита смазки и быстро изнашиваются. При этом их цена очень высока, как и у любой прецизионной аппаратуры. Приходится предъявлять повышенные требования к качеству топлива, что создаёт проблемы при эксплуатации.
  2. Возрастает роль системы рециркуляции. Если не разбавлять смесь выхлопными газами, то при горении сверхбедных составов будут образовываться ядовитые азотистые соединения, нейтрализация которых малоэффективна и затратна. С этим столкнулись и разработчики дизельных двигателей в последних поколениях. Однако работа EGR в моторах с прямым впрыском быстро загрязняет канал впуска, поскольку клапаны уже не омываются бензином. Падают рабочие сечения, нагар покрывает стебли, клапан может просто зависнуть и встретиться с поршнем. Помогает описанный выше комбинированный впрыск и рекомендации периодически ездить на мощностных режимах.
  3. Наличие серы в товарных бензинах при высоких давлениях и температурах вызывает образование серной кислоты, которая разрушает форсунки и ТНВД. Это препятствует эксплуатации таких моторов в районах, где трудно заправиться высококачественным топливом.

Получается, что преимущества системы, а к ним можно отнести экономию топлива на режимах малых и средних нагрузок и простоту обеспечения экологических норм, не перевешивают в глазах водителей связанных с новыми технологиями затрат. Всем нравится, когда двигатель с прямым впрыском и турбонаддувом по расходу топлива приближается к хорошему дизелю, но ровно до того момента, с которого становится ясно во сколько это обходится. Но обратный путь вряд ли возможен, требования по выбросу вредных веществ и углекислого газа уже никто не отменит. А развитие техники постепенно устранит все недостатки в целом перспективного прямого впрыска.

Большая политика

ДЕСЯТИЛЕТИЯМИ впрыск и карбюрация мирно сосуществовали: в модельном ряду многих автопроизводителей имелись обе версии двигателей. У покупателей был выбор: отдать предпочтение дешевому карбюратору, обслуживать который можно без лишних затрат, или более дорогому впрыску с повышенной чувствительностью к качеству топлива и сложными деталями, многие из которых вообще неремонто-пригодны.

Но в 1963 году в США был принят закон о чистом воздухе – “Clean Air Act”, и оказалось, что лучше всего новым требованиям отвечают европейские модели с системами впрыска. В самой Европе в 1993 году вступил в силу стандарт “Euro I”, в который не вписывались как обычные карбюраторы (без электронного управления), так и впрыск с механическим управлением. Еще через три года ввели более жесткие ограничения “Euro II”, и эра карбюраторов завершилась. Конец ей положила забота об окружающей среде: только инжектор сохраняет выхлоп автомобиля в рамках современных экологических требований, причем происходит это в течение длительного времени и безо всяких регулировок.

В наши дни инжектор уже практически полностью вытеснил карбюратор. Одним из его последних оплотов оставался АвтоВАЗ, отказавшийся от древнего устройства лишь несколько лет назад, да и то по причине введения в России “Euro II”. А впрыск у нас впервые появился на “Жигулях” в 1991 году – им оснащали экспортную модификацию ВАЗ-2107.

Увидим ли мы в будущем альтернативу самому впрыску? Время покажет.

Common Rail не только в дизеле

Системы впрыска Common Rail ассоциируются только с дизельными двигателями, используемыми с конца 90-х годов, но это именно то, что это решение позволило также разработать прямой впрыск бензина. (ГДИ). Что ж, в бензиновом двигателе, как и в дизеле, топливо перед подачей к форсункам накапливается в топливной рампе, куда оно поступает под высоким давлением благодаря топливному насосу высокого давления. Двигатели с непрямым впрыском не имеют этих двух компонентов.

Однако, в отличие от дизелей, топливовоздушная смесь воспламеняется классическим способом, т.е. искрой от свечи зажигания. Однако — аналогично дизелям — при непосредственном впрыске давление в цилиндре выше после воспламенения смесипоэтому вырабатывается больше энергии, что означает более высокий крутящий момент в полном, но особенно низком и среднем диапазоне скоростей.

Принцип работы инжектора и его конструкция

Думаю что будет лучше всего, если мы рассмотрим принцип работы инжектора на распределенной системе впрыска, так как именно она установлена на большинстве автомобилей и считается одной из самых удачных и распространенных.

Для удобства предлагаю разделить систему подачи топлива на две основные составляющие – электронную и механическую. Роль механической системы достаточно простая – обеспечение непрерывной и дозированной подачи топлива в цилиндры. А вот управление и контроль системы производится электроникой.

Механическая часть

Механическая составляющая инжекторной системы включает в себя следующие компоненты:

  • бензонасос (электрический);
  • топливный бак;
  • фильтр очистки бензина;
  • топливную рампу;
  • топливопроводы высокого давления;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

Этот список составляющих не исчерпывающий. В зависимости от конструктивных особенностей двигателя и системы управления в механическую часть могут включатся и другие элементы. Приведенный выше список является списком обязательных элементов для любого двигателя.

Принцип работы

Теперь давайте рассмотрим зачем все эти составляющие нужны и какую работу выполняет каждая из них. Думаю все и так знают, что топливный бак это емкость для бензина. Электрический бензонасос, который расположен в баке, обеспечивает непрерывную подачу топлива под давлением.

После чего топливо попадает в фильтр, где очищается от примесей и прочего мусора. Топлипроводы высокого давления позволяют бензину беспрепятственно двигаться по системе подачи топлива.

Регулятор давления не позволяет достигать критической отметки давления во всей системе. Через регулятор топливо попадает в топливную рамку, которая подводит его к форсункам. Форсунки расположены во впускном коллекторе.

Несколько лет назад форсунки срабатывали под давлением топлива и их конструкция была полностью механической. Тут принцип работы достаточно прост – бензин оказывает давление на пружину форсунки и открывает её, а уже через неё и впрыскивается в цилиндры.

Сейчас на большинстве автомобилей устанавливают электромагнитные форсунки. Основной составляющей, которой являются обычный якорь и обмотка. Канал подачи топлива открывается благодаря получению сигнала от электронной системы управления.

С обратной стороны в систему принудительно подается воздух, через воздушный фильтр. Дроссельный узел с заслонкой располагается в патрубке по которому идет воздух. Когда водитель нажимает на педаль газа, он воздействует на заслонку. Но водитель осуществляет контроль только над воздухом, который подается в цилиндр, топливо регулирует электронная система управления.

Электронная часть

Блок памяти и контролер являются основными составляющими в электронной системе управления, которая в свою очередь выполняет роль основы электронной части инжекторной системы. Блок управления осуществляет контроль над системой подачи топлива благодаря целому ряду датчиков, которые входят в конструкцию инжектора.

Основные датчики, которые дают электронному блоку управления информацию о работе топливной системы являются:

  1. Лямбда-зонд. Задача этого датчика определение остатков воздуха в выхлопных газах. На основе получаемых данных блок управления регулирует подачу воздуха в топливную смесь.
  2. Датчик массового расхода воздуха. Задачей этого датчика является определение объема воздуха, который проходит через дроссельную заслонку. Обычно этот датчик устанавливается внутри корпуса воздушного фильтра.
  3. Датчик положения дроссельной заслонки. Подача сигнала о положении педали газа – вот основное предназначение данного датчика.
  4. Датчик температуры силовой установки. В зависимости от температуры мотора, о которой сообщает этот датчик, блок управления регулирует топливную смесь.
  5. Датчик положения коленчатого вала. Этот датчик ответственный за выбор цилиндра в который нужно подать топливо и время подачи искры.
  6. Датчик детонации. Располагается в блоке цилиндров и предназначен для выявления и устранения детонаций.
  7. Датчик скорости. Создает импульсы, благодаря которым рассчитывается скорость движения автомобиля. Корректируется топливная смесь, опираясь на показания от него.
  8. Датчик фаз. Он определяет угловое расположение распредвала.

Применяемость двигателя 1.4 TSI ЕА211 на автомобилях по годам выпуска

Марка, модель автомобилей с 1.4 TSI ЕА211Модель двигателя 1.4 TSI ЕА211годы применения
Сиат Леон IIICPWA03.2014 —
Шкода Октавия III03.2015 —
Фольксваген Гольф VII04.2013 —
Ауди A3 8V02.2014 —
CZCC02.2016 —
CMBA05.2012 – 04.2014
Сиат Леон III11.2012 – 03.2014
Фольксваген Гольф VII08.2012 – 04.2014
АудиA1CZCA11.2014
A3 8V07.2013 – 04.2016
Q3 8U06.2016
СиатЛеон III04.2014 —
Толедо IV07.2015 —
ШкодаКадьяг03.2017 —
Рапид04.2015 —
Фабия III04.2018 – 08.2018
Superb III03.2015 —
Йети06.2015 —
ФольксвагенГольф VII04.2014 —
Пассат B807.2014 —
Тигуан I05.2015 – 01.2016
Тигуан II06.2016 —
Сиат Леон IIICHPA11.2012 – 03.2014
Шкода Октавия III12.2012 – 05.2015
Фольксваген Гольф VII08.2012 – 04.2014
АудиA1 8XCPTA02.2013 – 11.2014
A3 8V02.2013 – 04.2016
Сиат Ибица (6J/6P)12.2013 – 08.2015
ФольксвагенГольф VII08.2012 – 04.2014
Поло V10.2012 – 03.2014
АудиA4 B9CZDA, CVNA08.2015 —
A5 F52017 —
Сиат Алхамбра II05/2015 —
Фольксваген Шаран II
ШкодаКадьяг03.2017 —
Октавия III05.2015 —
Йети06.2015 —
ФольксвагенБитл10.2014 —
Гольф VII04.2014 – 06.2017
Пассат B807.2014 —
Тигуан I05.2015 – 01.2016
Тигуан II06.2016 —
Тоуран II05.2015 —
АудиA1CZEA11.2014 —
A3 8V04.2014 —
Q210.2016 —
Q3 8U11.2014 —
СиатИбица (6J/6P)09.2015 —
Леон III04.2014 —
Атека04.2016 —
ШкодаСуперб III03.2015 —
Кадьяг03.2017 —
ФольксвагенГольф VII04.2014 – 03.2017
Пассат B807.2014 —
Поло V04.2014 —
Тигуан II06.2016 —

Вывод. Одноразовый конструктив мотора не позволяет ремонтировать блок цилиндров проточкой под ремонтные размеры после окончания ресурса. Капитальный ремонт возможен но агрегатным способом, то есть, заменой изношенных узлов и деталей (блок, коленвал, и т. д.), такой ремонт более дорогой, в отличие от установки контрактного двигателя.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий