Что лучше: турбина или механический компрессор?

Преимущества турбокомпрессора.

  1. Оснащенный турбокомпрессором двигатель имеет экономические и технические преимущества в сравнении с атмосферным (безнаддувным) давлением
  2. Двигатель с турбокомпрессором имеет более высокую массу и мощность чем атмосферный двигатель
  3. Двигатель с турбокомпрессором не такой огромный, как атмосферный, с той же мощностью

Кривая крутящего момента двигателя оснащенным турбокомпрессором, лучше адаптируется к специфическим условиям эксплуатации. Это, например, когда водитель огромного и тяжелого грузового автомобиля значительно реже переключает передачи на дороге горной местности, плюс само вождение будет более “мягким”.

Также отметим, что на базе атмосферных двигателей можно производить версии, оснащенные турбокомпрессором, которые будут отличаться по мощности.

  1. Турбокомпрессор, укомплектованный в двигатель обеспечивает лучшее сгорание топлива. И это подтверждает уменьшение потребления топлива грузовиками на больших пробегах
  2. Улучшая сгорание, турбокомпрессор уменьшает выброс токсичности отработавших газов
  3. Двигатель с турбокомпрессором работает намного стабильнее своего атмосферного аналога такой же мощности, и издает меньше шума
  4. Турбокомпрессор для двигателя и всей системе сгорания выступает как определенный глушитель в системе выпуска

Ремонт турбокомпрессоров (ремонт турбин).

Современный турбокомпрессор – высокотехнологическое устройство, следовательно, и ремонт турбин представляет собой сложную задачу, которая требует у мастеров внимательности, аккуратности, технических навыков с использованием качественных материалов.

Если Вы заметили какие-либо неполадки на своей технике, связанные с турбинным оборудованием, то вам необходимо моментально проконсультироваться у специалиста, мастера, и предпринять соответствующие меры.

Здесь главная задача мастера – определить все причины, содействующие проблемам с турбиной. Быстро и эффективно разобраться в неполадках, и решить их, заказав ремонт турбины.

Что касается причин, которые содействуют выходу турбокомпрессора из строя, то их может быть много. Например, значительно высокая температура отработавших газов, большая частота вращения вала и другие.

Также повредить турбину можно обычными (естественными) причинами неисправностей, не задавая больших нагрузок на двигатель:

  1. Масляная недостаточность
  2. Загрязнение масла химическими элементами
  3. Загрязненный воздушный фильтр
  4. Перегрев турбокомпрессора
  5. Иные предметы, попавшие в улитку компрессора или механической турбины

Определяя и убирая все эти причины, и возможные другие, ремонт турбокомпрессоров и диагностика проходит следующим образом:

  1. Разбирается все оборудование, детали тщательно очищаются и моются от смазки
  2. Проводится дефектация, поиск трещин и признаков износа турбин
  3. Проводятся ремонтные токарно-слесарные работы
  4. Устанавливаются новые комплектующие на турбокомпрессор
  5. Балансируется ротор вала и турбина, затем собирается, и проводится диагностика на утечку масла
  6. По окончании, устанавливается улитка и чугунка

Проделывая весь вышеперечисленный комплекс мероприятий по ремонту турбокомпрессоров можно ремонтировать турбинное оборудование любой сложности: для легковых и грузовых автомобилей, автобусов, сельскохозяйственной, строительной техники и т.д. главное производить ремонт в заводских условиях .

Качественный ремонт турбин практически невозможен без качественного спецоборудования.

Балансировка – один из самых важных и основных моментов в ремонте турбокомпрессора, без проведения этой операции или проведения некачественной балансировки, ремонт можно считать недействительным.

Ремонт турбин для легковых и грузовых автомобилей, микроавтобусов, спецтехники необходимо производить опытными, квалифицированными специалистами в области гидрооборудования. К ремонту турбокомпрессора необходимо прилагать гарантийный талон, и обязательно инструкцию по установке и эксплуатации.

В конце отметим, что любой турбокомпрессор или механическая турбина нуждаются в определенном обслуживании. А именно, всегда нужно следить за смазкой всего оборудования. Потому, как недостаток масла обычно приводит к сильному износу, а то и выхода из строя запчастей.

Частые и основные признаки неисправности

– это черный или синеватый дым из выхлопной трубы, сокращенная мощность двигателя, увеличенный расход моторного масла или шум при работе турбокомпрессора.

На двигателе, который отлично работает, вовремя и качественно обслуживается, турбокомпрессор может безотказно работать в течение многих лет. Следовательно, не будет необходимости задумываться про ремонт турбокомпрессоров на своей технике на протяжении долгого времени.

В чем разница между турбокомпрессором и компрессором?

Хотя они имеют одинаковое назначение, компрессор и турбонагнетатель отличаются как по конструкции, так и по расположению, и по способу их работы.

Давайте разберемся, что такое компрессор и в чем его плюсы и минусы Проще говоря, компрессор представляет собой тип довольно простого механического устройства, которое сжимает воздух, который поступает в камеру сгорания двигателя транспортного средства. Устройство приводится в движение самим двигателем, а мощность передается фрикционным ремнем, прикрепленным к коленчатому валу.

Энергия, генерируемая приводом, используется компрессором для сжатия воздуха и последующей подачи сжатого воздуха в двигатель. Это делается с помощью всасывающего коллектора.

Установка компрессора на ВАЗ 2107 карбюратор

Установка компрессора на семерку – это возможность увеличить эффективность нагнетания горячей смеси и соответственно повысить мощность двигателя. Наиболее популярным компрессором, который автолюбители и мастера ставят на Ваз 2107 – это ПК05D о котором пойдет речь. Почему именно он? Просто его характеристики отвечают наиболее оптимальным, а именно: избыточное давление воздуха всего 0,5 бар и это достигается при 6200 оборотов за минуту. Кроме этой решающей характеристики ещё один факт в пользу данного компрессора – при его установке не нужно вмешиваться в конструкцию поршневой группы, а это значит, что установка предельно проста.

Установка компрессора на ВАЗ 2107 карбюратор своими руками вполне возможна без вмешательства специализированных мастеров. Естественно, предварительно, вам стоит ознакомиться с некоторыми особенностями этой процедуры, а также знать последовательность и порядок действий. Если вы волнуетесь о преимуществах компрессора, то поверьте, он давно используется для этих целей в семерках и за это время претерпел несколько существенных доработок, который сделали его ещё лучше и естественно эффективней. Последним новшеством стало существенное понижение шумовых характеристик агрегата, поэтому нагнетатель работает практически бесшумно.

ПК05D состоит из двух основных элементов, которые заслуживают вашего внимания и понятия. Первым является центробежное устройство, а вторым – мультипликатор высокооборотистый. Особенностью компрессора является отсутствие необходимости обслуживать его, а привод механизма проводится ремнём поликлинового типа от коленвала двигателя.

В конструкциях подобного рода мультипликатор делается на основе подшипников, которые после пробега около 50 тысяч километров следует заменять. То же самое касается ремня, потому что он также подвержен определенному износу, что само собой разумеется

Важно понимать, что для нормальной работы компрессора на ВАЗ 2107 карбюратор, нужно обеспечить подачу тосола (антифриза) или же моторного масла. Выше мы уже говорили про отсутствие необходимости изменять конструкцию силового агрегата, однако заменить вал генератора, коленчастый шкив и водяную помпу все же нужно

Дело в том, что теперь в них будет использоваться поликлиновый ремень, а не обычный. Где взять такой ремешок? Эксперименты показали, что вполне годится от Шевроле Нивы. Мы делали замеры, и после установки компрессора прирост мощности автомобиля составил порядка 50 процентов.

Порядок действий при установке компрессора на ВАЗ 2107 карбюратор: 1. Снимаем стандартный ремень генератора и демонтируем его крепление 2. Снимаем воздушный фильтр 3. Устанавливаем вместо заводских шкивов шкивы от автомобиля Niva Chevrolet 4. Монтируем кронштейн крепление компрессора, а также сам компрессор и ремень генератора согласно представленной ниже схеме. (втулки из комплекта нужно надеть на шпильки между креплением и компрессором) 5. Ставим гофрированный патрубок на входное отверстие компрессора и устанавливаем фильтр. 6. Монтируем на выходное отверстие компрессора патрубки (они должны соединится специальной трубой диаметром 60мм и длиной 50мм.) 7. Соединяем трубу 60мм с клапаном, ставим муфту, а также подводящий фланец в карбюратор. 8. Синим шлангом соединяем штуцер компрессора и штуцер карбюратора 9. Шланг для вентиляции картерных газов отсоединяем, а все остальные соединения фиксируем хомутами. 10. Последний пункт – это регулировка натяжения ремня генератора.

Вот и все действия по установке нагнетателя, теперь вы получили свой прирост 50 процентов мощности. Согласитесь, что эта процедура не такая уж и сложная, как может показать изначально.

Преимущества компрессора

  • Эффективный впрыск воздуха, который увеличивает мощность от 10 до 30%
  • Очень надежная и прочная конструкция, которая часто превышает срок службы двигателя машины
  • Это никак не влияет на работу двигателя, так как компрессор является полностью автономным устройством, хотя и находится близко к нему.
  • Во время его работы рабочая температура резко не увеличивается
  • Не использует много масла и не требует постоянного долива
  • Требует минимального обслуживания
  • Может быть установлен дома механиком-любителем.
  • Здесь нет так называемого «лага» или «ямы». Это означает, что мощность может быть увеличена мгновенно (без каких-либо задержек), как только компрессор приводится в движение коленчатым валом двигателя.
  • Эффективно работает даже на низких скоростях

Механический нагнетатель и турбокомпрессор

Турбина представляет собой ротационный двигатель, особенностью которого является его постоянная и беспрерывная работа. Ранние попытки создать турбину предпринимались еще на заре развития человечества, но качественная реализация стала возможна только в 19 веке. Эпоха развития машиностроения позволила создать первые турбины, которые были паровыми. Турбина осуществляет преобразование кинетической энергии пара, газов или воды в полезную механическую работу. Турбины нашли свое применение во многих устройствах, а также стали неотъемлемой частью различных видов транспорта. Это касается как наземных средств передвижения,  так и морских судов наряду с воздушными летательными аппаратами.

Если говорить о компрессоре, то конструктивно устройство может иметь разные модификации и успешно применяется во многих промышленных областях. Главной его задачей становится сжатие и подача газа под давлением.

Дальнейшее развитие технологий привело к появлению своеобразного симбиоза турбины и компрессора. Разработка турбокомпрессора позволила значительно повысить КПД и мощность двигателей.

Как известно, получить максимальную мощность мотора без увеличения его объема можно при помощи принудительного нагнетания в камеру сгорания большего количества воздуха. Остается только подать больше топлива и мощность силового агрегата существенно возрастет. Как показывают приведенные в различных источниках данные, в среднем компрессор обеспечивает прибавку мощности до 50% и обеспечивает около 30% прироста крутящего момента.

Сейчас механические и турбокомпрессоры устанавливаются отдельно и даже в совокупности для увеличения мощности двигателя легковых и грузовых автомобилей. Их ставят на бензиновые и дизельные агрегаты. Данные решения являются оптимальным и наиболее экономичным вариантом прибавки «лошадей» в том случае, если нужно качественно увеличить мощность ДВС без увеличения объема цилиндров.

С этой задачей  успешно и по отдельности может справиться как полностью механический, так и турбокомпрессор. Но какое из этих решений лучше? Давайте сравним механический компрессор и турбокомпрессор.

Принцип работы турбины

Большинство транспортных средств оснащаются четырёхтактными моторами, функционирование которых находится под управлением системы впускных/выпускных клапанов. Каждый рабочий цикл современного силового агрегата, как следует из названия, включает четыре такта, или эпизода, в результате которых коленвал двигателя совершает два полных оборота.

Рассмотрим эти такты детальнее:

  • во время впуска поршни двигаются вниз, при одновременном попадании в камеру сгорания ТВС (у дизельных моторов в КС поступает только воздух);
  • такт компрессии предполагает сжатие топливовоздушной смеси;
  • на такте расширения происходит поджог сжатой смеси искрой, генерируемой в определённый момент свечой зажигания (у дизельных агрегатов воспламенение происходит самопроизвольно в результате нагнетания солярки под более высоким давлением). В результате горения происходит взрывоподобное расширение смеси, преобразующейся в тепло и выхлопные газы;
  • такт выпуска характеризуется освобождением выхлопа с одновременным движением поршня вверх под действием давления выхлопных газов.

Не вдаваясь в подробности, отметим, что такая схема работы мотора предполагает возможность увеличения его эффективности следующими способами:

  • увеличением объёма КС и всего двигателя;
  • ростом оборотов коленвала;
  • установкой турбонаддува.

Первый метод можно реализовать по двум независимым направлениям: посредством увеличения размеров цилиндров или добавлением новых цилиндров. Оба способа применимы, но исключительно за счёт роста массы и габаритов силового агрегата. То есть это явно выраженный экстенсивный тип развития.

Рост числа оборотов коленвала возможен посредством увеличения количества тактов работы поршня, но и этот способ имеет жесткие ограничения по применимости, вызванными как техническими особенностями реализации, как и падением общего КПД мотора в силу неизбежного увлечения потерь, особенно на такте впуска.

Классическая схема работы ДВС предполагает использование воздуха, попадающего в двигатель самотёком. Применение турбонаддува позволяет подавать в цилиндры тот же объём воздуха, но в сжатом виде, то есть фактически увеличить количество кислорода в камере сгорания. А значит, в единицу времени можно подавать и больше горючего, что позволяет увеличить эффективность работы силового агрегата.

Конструктивно эта схема реализуется следующим образом: отработавшие газы, появившиеся в результате сгорания ТВС, направляются на лопасти ротора, вращая вал турбины. Это приводит в движение вал компрессорной установки, которая собственно, и отвечает за подачу в цилиндры атмосферного воздуха под давлением. По пути воздух, нагретый из-за эффекта сжатия, охлаждается интеркулером, что позволяет предотвратить ранее воспламенение горючей смеси по причине повышения её температуры.

Как видим, коленвал автомобиля и турбонаддув напрямую не связаны, однако в действительности скорость вращения коленчатого вала оказывает влияние на работу турбины. Дело в том, что при больших оборотах энергия выхлопа возрастает, что приводит к росту мощности турбокомпрессора.

А теперь рассмотрим, чем отличается механический компрессор от турбины.

Устройство

Механический нагнетатель во многом похож на турбонаддув. Обе системы нагнетают воздух. Но рассматриваемый вариант обладает важным преимуществом, поскольку имеет незначительную задержку в срабатывании, является менее энергозатратной и экономичной.

Конструктивно приводной нагнетатель состоит из:

  • воздушного канала;
  • нагнетателя;
  • лопастей;
  • диффузора;
  • накопителя (улитка).

Есть и вспомогательные элементы, куда же без них.

Саму же работы можно описать примерно так:

  • по воздушному канала воздух попадает к нагнетателю;
  • затем оказывается на лопастях;
  • за счет центробежной силы происходит выброс воздуха непосредственно в кожух диффузора;
  • после воздух оказывается в улитке.

Как раз тут и появляется та самая разница в давлении. Находясь под высоким давлением, воздух оказывается в цилиндрах. Там он сжимается, тем самым повышается температура. Чтобы охладить систему, применяется интеркулер.

Зачем нужен компрессор

Для того, чтобы сжимать и транспортировать воздух и различные газы, применяется компрессор. Он приводится в действие двигателем. В соответствии со спецификой создания высокого давления и особенностями конструкции компрессоры могут быть динамическими и объемными. В первых происходит сжатие газообразного вещества за счет механической энергии на их валу. Установленные на нем лопатки гонят газ в определенном направлении и сжимают его. Компрессоры, работающие по динамическому принципу, бывают осевыми и центробежными. Это зависит от типа рабочего колеса и направления потока.

Компрессор автомобильный

В турбокомпрессорах газ сжимается вследствие неподвижной и вращающейся решетками областей. Объемные компрессоры так называются потому, что во время работы в них меняется объем камеры, в которой сжимается газ. Это самый распространенный тип компрессоров. Основными среди них являются те, в которых происходит процесс сжатия за счет работы поршня в цилиндре, а также машины, в которых сжимающий элемент вращается. Их еще называют роторными.

Турбокомпрессор

Компрессоры могут иметь общее назначение или применяться в конкретных производствах. Они широко используются в химической промышленности, газотранспортных системах, в строительстве, транспорте, пищевой промышленности и других отраслях. Без компрессоров не обходятся холодильные установки. Компрессоры сжимают воздух для работы различных инструментов и установок в промышленности, сервисных службах и на стройках, для обеспечения работы. Сжимают кислород, азот, хлор и другие газы для различных нужд.

Устройство поршневого компрессора

В действие они могут приводиться двигателями внутреннего сгорания и электрическими, газовыми и паровыми турбинами.  Для использования в местах, где отсутствует электричество, обычно применяют дизельные компрессорные установки.

Компрессоры во время работы нагреваются и требуют охлаждения, которое бывает жидкостным или воздушным. Они могут работать стационарно или быть мобильными и портативными.

Некоторые компрессоры могут создавать не только давление и разрежение. Показателями производительности компрессоров является обычно кубометр (тысячи, миллионы кубометров) газа в единицу времени. Они зависимости от назначения, могут создавать малое, среднее, высокое и сверхвысокое давление.

Работа турбонагнетателя

Устройство турбонагнетателя позволяет работать ему по такому принципу действия — выхлопные газы при попадании в турбину, начинают вращать ротор. На роторе жестко сидят рабочие колеса центробежного компрессора, которые вращаются с той же угловой скоростью, что и сам ротор.Чем выше энергия отработанных газов, тем быстрее вращаются колеса турбины и, чем больше попадает кислорода, тем больше сгорает топлива и мощнее работает сам турбокомпрессор.

Частота вращения вала и рабочих колес турбонагнетателя может быть довольно высокой и доходить до 150 000 оборотов в минуту.

Много турбонагнетателей имеют возможность менять геометрию турбины с помощью специального механизма. В конструкции этого устройства есть дополнительное кольцо с направляющими лопатками, которыми можно управлять. Они могут поддерживать поток отработанных выхлопных газов не только постоянным, но и изменять этот поток.

При высоких оборотах работы поперечное сечение турбины больше, лопасти полностью открывают подачу газов. Пропускная способность движения газов больше.

Такая способность регулировки площади сечения турбины позволяет уменьшать расход топлива и минимизировать вредных выхлопные выбросы. Турбонагнетатель с возможностью самостоятельно изменять геометрию турбины, повышает эффективность работы устройства как на высоких, так и на низких оборотах.

Турбонаддув с использованием отработавших газов

В системах турбонаддува с использованием отработавших газов некоторая часть энергии отработавших газов преобразуется в механи­ческую энергию, необходимую для привода нагнетателя при помощи турбины (турбонаг­нетателя отработавших газов). Таким образом, этот процесс использует некоторую часть энтальпии, которая на безнаддувных двигателях остается неиспользованной. Однако эти си­стемы вызывают увеличение противодавле­ния отработавших газов. Для сжатия воздуха в таких системах используются исключительно гидрокинетические компрессоры.

Рис. «Сравнение кривых мощности и крутящего момента двигателей без наддува и с турбонаддувом»

Турбонагнетатели отработавших газов обычно применяются для создания высокого давления наддува даже при низких частотах вращения коленчатого вала двигателя. Другими словами, турбина турбонагнетателя рассчитана на среднюю частоту вращения. При этом следует учитывать, что при высоких частотах вращения давление наддува может возрастать до уров­ней, которые вызовут чрезмерные нагрузки на двигатель. Поэтому турбина снабжается пере­пускным клапаном, который при определенной частоте вращения начинает пропускать часть потока отработавших газов мимо турбины. При этом энергия этих отработавших газов остается неиспользованной. Значительно более удовлет­ворительные результаты (т.е. высокое давление наддува в нижнем диапазоне оборотов и в то же время возможность избежать перегрузки в верхнем диапазоне) могут быть получены при использовании турбонагнетателя с изменяемой геометрией турбины (VTG). В этих системах за счет изменения положения направляющих ло­паток осуществляется регулирование сечения потока и угла атаки рабочих лопаток (и, таким образом, давления отработавших газов, посту­пающих на турбину) (см. «Турбо­нагнетатели»).

Преимущества турбонаддува с использованием отработавших газов:

  • Значительное увеличение выходной мощ­ности на литр рабочего объема;
  • Значительное снижение расхода топлива по сравнению с двигателями без наддува равной мощности;
  • Снижение содержания токсичных продук­тов в отработавших газах;
  • Сравнительно небольшой занимаемый объем;
  • Может быть использован совместно с си­стемами рециркуляции отработавших га­зов низкого давления.

Недостатки турбонаддува с использованием отработавших газов:

  • Установка турбокомпрессора в тракте с «горячими» отработавшими газами требует применения термостойких материалов;
  • Повышенная тепловая инерция в системе выпуска отработавших газов;
  • Без принятия дополнительных мер сравни­тельно низкий пусковой крутящий момент в случае установки на двигателях с малым рабочим объемом.

Специальные виды турбонаддува

В электрифицированных системах турбонаддува используется дополнительный электродвигатель, приводящий во вращение турбонагнетатель при отсутствии потока отработавших газов. Преиму­щество такой системы заключается в обеспече­нии турбонаддува в переходных режимах работы двигателя и при низких частотах вращения. Эти системы пока что не нашли применения в серий­ном производстве автомобилей ввиду их большой сложности и высокой потребляемой электриче­ской мощности. Применение электрифицирован­ных систем турбонаддува позволит значительно уменьшить занимаемый системой объем.

Еще один специальный вид турбонаддува — системы турбонаддува с использованием энер­гии волн сжатия, которые пока что не нашли применения в серийном производстве. Принцип действия основан на отражении волн сжатия во вращающемся секционном роторе (см. «Нагне­татели и турбонагнетатели»). Основным преи­муществом является очень высокое быстродей­ствие, обеспечивающее быстрое нарастание крутящего момента в переходных режимах. Од­нако применение таких систем связано с высо­кими затратами, а необходимость в отдельном приводе создает проблему нахождения соответ­ствующего свободного пространства.

Что такое турбо и каковы его плюсы и минусы?

Турбокомпрессор, как мы отмечали в начале, выполняет ту же функцию, что и компрессор. Однако, в отличие от компрессора, турбонагнетатель представляет собой несколько более сложное устройство, состоящее из турбины и компрессора

Другое важное различие между двумя системами принудительной индукции состоит в том, что, хотя компрессор получает энергию от двигателя, турбонагнетатель получает свою мощность от выхлопных газов

Работа турбины относительно проста: при работающем двигателе, как уже упоминалось, выделяются газы, которые вместо выпускаются непосредственно в атмосферу, проходят через специальный канал и приводят турбину в движение. Он в свою очередь сжимает воздух и подает его в камеру сгорания двигателя, чтобы увеличить его мощность.

Что лучше?

Стоит посмотреть на производителей, сейчас компрессоров вы и не найдете. ТОЛЬКО – ТУРБИНА! Почему да очень просто, разделите 200 000 на 12000 = 16, именно во столько превосходит турбина своего соперника по оборотам, а соответственно и выигрыш в мощности будет ощутимый.

Если констатировать, то:

Может вы рядовой парень, на ПРИОРЕ, и хотите установить себе нагнетатель своими руками (да еще и дешево), чтобы повысить мощность на 10%, причем вам важна надежность – то однозначно компрессор.

Турбина вам не по плечу, потому как придется перелопатить устройство мотора, ставить всякие даунпайпы, лезть в смазку вашего агрегата, да еще много всяких приколов. Причем стоимость будет в разы больше.

Тут как говорится – что кому нужно! А я надеюсь, что моя статья вам помогла, сейчас смотрим видео.

Теперь ребят попрошу проголосовать, что вы себе поставили?

А вот теперь заканчиваю, думаю было полезно, читайте наш АВТОБЛОГ.

Турбина

Принцип работы турбины

В отличие от компрессора, турбина «встраивается» в двигатель, использует его масло и функционирует от выхлопных газов, то есть происходит «вмешательство» в систему выпуска.

Принцип работы турбины следующий: газы поступают на выпуск двигателя, далее идут на горячее колесо турбины (раскручивая его), энергия вращения передаётся на холодное колесо, которое начинает быстро вращаться и нагнетать воздух на впуск двигателя.

Плюсы турбины:

  • более высокая эффективность работы;
  • использует энергию выхлопных газов;

Минусы турбины:

  • эффективно работает на высоких оборотах;
  • присутствует так называемый турболаг или задержка между нажатием на педаль газа и увеличением мощности двигателя;
  • использует моторное масло для смазки, а потому двигатель требует более частой его замены;
  • повышенный расход масла;
  • недолгий срок эксплуатации, в лучшем случае — до 200 тыс. километров;
  • высокая стоимость ремонта;
  • сложности в установке;

Фактически, главный и единственный плюс турбины — это внушительное увеличение мощности двигателя, дальше идут одни минусы. 

Почему турбина на дизеле практически вечная?

Если сравнить турбину на бензиновом двигателе и взять средний пробег 90000-120000 км. и обычную турбину с дизельного мотора с пробегом 250000 км.а то и более.Работа турбины на бензине и на дизеле практически идентична. У турбины есть горячая часть и холодная.Горячая часть работает на энергии выхлопных газов которые идут с выпускного коллектора и раскручивает эту часть турбины. Она валом соединена с холодным компрессорным колесом которое раскручивается до высоких оборотов и нагнетает воздух в цилиндры двигателя. Берёт воздух с окружающей среды. За счёт этого воздушно топливной смеси у нас становится больше и растёт мощность двигателя.Так почему дизельные турбины ходят дольше?

  • Это температура выхлопа. У бензина она составляет 800-900 градусов Цельсия , а у дизеля 500-600 градусов Цельсия. (Это в среднем.) Потому что КПД дизельного двигателя намного больше и энергия от сгоревшей смеси идет в работу, а у бензинового идёт на нагрев. Чем выше температура выхлопных газов тем сильнее разогревается турбина и масло которое смазывает подшипники ( втулки) может пригорать как в каналах так и в подшипниках. Поэтому смазка турбины будет происходить намного хуже и турбина может полностью за коксоваться и масло перестанет поступать. Масло не только смазывает но и отводит излишнюю температуру. Так как у бензинового движка температура выхлопа выше, значит турбина выходит из строя раньше срока. А на дизеле температура выхлопа ниже и турбина чувствует себя лучше.
  • Обороты двигателя. У бензина мотор работает в среднем 4000-6000 об. мин. А дизель в среднем 1500-2000 об. мин. Соответственно когда идёт выхлоп у бензинового двигателя то выхлопных газов проходит через турбину больше и турбина раскручивается быстрее. У дизеля обороты меньше и выхлоп не такой интенсивный и турбина раскручивается не так быстро как на бензине. Меньше оборотов больше ресурс турбины.У бензинового агрегата турбина развивает 100000-150000 об. мин. А дизеля показатели намного меньше. На бензине ставят клапана для сброса давления чтобы турбину не разорвало. На дизеле они тоже есть но дизель работает на меньших оборотах.
  • Масло. База у бензинового масла и у дизельного практически одинаковая. Но дизель работает на тяжёлом топливе и при сгорании образуется много серы. Сера твёрдое вещество и при оседании на деталях выступает в роли абразива. Поэтому в дизельное масло добавляют соответствующие мощные присадки для удаления серы и возможность держать в себе не давая оседать на трущихся деталях. А у бензинового масла таких присадок нет. Значит дизельное масло лучше смазывает турбину отводит окисления,серу и не пригорает, отводит тепло.
  • Интервалы замены масла. У дизельных моторов масло нужно менять чаще. Примерно 5000-7000 км. На бензине 8000-10000 км. Значит на дизеле масло чище и намного лучше смазывает турбину и поэтому турбина работает дольше на дизеле.

Источник

Можно ли установить турбину на обычный мотор?

Можно!
Только вот переделка будет не всегда оправдана экономически, судите сами –
кроме правильно подобранной турбины вам придется приобрести и сделать очень много действий.

Допустим, вы решили, что не будете менять поршневую группу в моторе, не будете усиливать блок ДВС, но свечи зажигания поменять придется – ведь старые рассчитаны на совсем другой режим работы. Так же придется поменять форсунки на более производительные. Замена форсунок повлечет замену бензонасоса, на более производительный.

Новые режимы работы двигателя потребуют полной модернизации его программы управления. Так, что “мозги” придется прошивать.
Датчик расхода воздуха на таких режимах долго не живет, его нужно заменить на датчик абсолютного давления (ДАД), причем рассчитанный на избыточное давление.

Необходимо определиться с системой охлаждения турбины – будет ли она только масляной или комбинированной масло + ОЖ. Соответственно надо врезать и протянуть новые масломагистрали (а может и патрубки ОЖ).
Для прокачивания масла по выросшей в объеме маслосистеме нужен более производительный маслонасос.

Впускной и выпускной коллектор придется поменять на такие, которые рассчитаны на работу с турбокомпрессором.

А еще придется ездить на более высокооктановом бензине, более хорошем масле и чаще его менять.
Стоит ли овчинка выделки?

В чем различия

  1. Главное отличие турбины от компрессора в том, что турбина это двигатель, в котором кинетическая энергия воды, пара или газа преобразуется в механическую энергию, обеспечивающую движение иди технологические процессы. Компрессор нужен, чтобы сжимать газ и подавать его под давлением, в том числе и для работы турбины.
  2. Рабочим телом в турбине может быть вода, газ или воздух. В компрессоре только газообразные вещества.
  3. Мощность турбины измеряется в киловаттах или лошадиных силах. Параметром, производительности компрессора является давление, которое может указываться в паскалях или атмосферах.
  4. Турбина может развивать мощность в зависимости от интенсивности подачи на ее лопатки рабочего тела. У компрессора мощность фиксированная.
  5. Турбина является технически более сложным устройством, чем компрессор.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий